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Problem Setup

We consider unconstrained optimization problems of the form

min
x∈Rn

f(x),

where:

• f : Rn → R is continuously differentiable

• Gradient ∇f(x) is available

Goal: find a point x⋆ such that ∇f(x⋆) = 0, which we assume exists.
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Descent Directions

Definition 1 (Descent Direction)
A vector d is a descent direction for f at x if

f(x + td) < f(x)

for all sufficiently small t > 0.

A simple sufficient characterization is given by the following result.

Lemma 2
If f is continuously differentiable in a neighborhood of x, then any
direction d such that

d⊤∇f(x) < 0

is a descent direction.
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Steepest Descent Direction

Among all unit directions:

min
∥d∥=1

∇f(x)⊤d

Solution:

d = − ∇f(x)
∥∇f(x)∥

Therefore the steepest descent direction is:

d = −∇f(x)

(up to scaling)
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Gradient Descent Algorithm

Basic idea: move in the direction of negative gradient
Given an initial point x0, iterate:

xk+1 = xk − αk∇f(xk),

where:

• αk > 0 is the step size (learning rate)

• k = 0, 1, 2, . . .

Gradient descent is a first-order method: it uses only gradient information.
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Proximal View of Gradient Descent

Gradient descent can be viewed as:

xk+1 = arg min
y

{
f(xk) +∇f(xk)⊤(y − xk)︸ ︷︷ ︸

first-order approx.

+ 1
2αk
∥y − xk∥22︸ ︷︷ ︸

proximal term

}
.
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Smooth Functions

Definition 3
f is L-smooth if

∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥

for all x, y.

Equivalent inequality:

f(y) ≤ f(x) +∇f(x)⊤(y − x) + L

2 ∥y − x∥2

Second-order characterization

∥∇2f(x)∥2 ≤ L, ∀x (for twice differentiable functions)
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Descent Lemma

Lemma 4 (Smoothness Upper Bound)
Assume f is L-smooth. Then for any x, direction d, and stepsize α,

f(x + αd) ≤ f(x) + α∇f(x)⊤d + Lα2

2 ∥d∥
2.

This follows from Taylor expansion and Lipschitz continuity of the
gradient.
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Applying the Descent Lemma
Choose the gradient descent direction:

d = −∇f(x).

Substitute into the lemma:

f(x− α∇f(x)) ≤ f(x)− α∥∇f(x)∥2 + Lα2

2 ∥∇f(x)∥2.

The right-hand side is minimized at

α = 1
L

.

Then gradient descent satisfies:

f(xk+1) = f

(
xk − 1

L
∇f(xk)

)
≤ f(xk)− 1

2L
∥∇f(xk)∥2.

Gradient Descent 0-10



Aggregating the One-Step Decrements
From the one-step descent inequality,

f(xk+1) ≤ f(xk)− 1
2L
∥∇f(xk)∥2,

assume f is lower bounded:

f(x) ≥ f̄ .

Summing over k = 0, . . . , T − 1 and telescoping gives

f(xT ) ≤ f(x0)− 1
2L

T −1∑
k=0
∥∇f(xk)∥2.

Using f(xT ) ≥ f̄ , we obtain
T −1∑
k=0
∥∇f(xk)∥2 ≤ 2L

(
f(x0)− f̄

)
.
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Asymptotic Stationarity

From bounded sum:

∞∑
k=0
∥∇f(xk)∥2 <∞

it follows that

lim
k→∞

∥∇f(xk)∥ = 0

Interpretation
Gradient descent converges to a stationary point (not necessarily
global minimum).
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Rate of Convergence

From averaging:

min
0≤k≤T −1

∥∇f(xk)∥2 ≤ 1
T

T −1∑
k=0
∥∇f(xk)∥2

Using previous bound:

min
0≤k≤T −1

∥∇f(xk)∥ ≤

√
2L
(
f(x0)− f̄

)
T

This gives an O(T −1/2) stationarity rate.

Gradient Descent 0-13



Convex and Smooth Functions

We now assume:
• f is convex
• f is L-smooth
• Global minimizer x∗ exists

Define optimal value:

f∗ = f(x∗)

We analyze gradient descent with constant stepsize

α = 1
L

.
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Convergence Rate (Convex Case)

Theorem 5
Suppose f is convex and L-smooth, and let x∗ be a minimizer. Then
gradient descent with stepsize α = 1/L satisfies:

f(xT )− f∗ ≤ L

2T
∥x0 − x∗∥2, T = 1, 2, . . .
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Proof

By convexity,

f(x⋆) ≥ f(xk)+∇f(xk)⊤(x⋆−xk)⇒ ∇f(xk)⊤(xk−x⋆) ≥ f(xk)−f⋆.

Combining with descent:

f(xk+1) ≤ f(x⋆) +∇f(xk)⊤(xk − x⋆)− 1
2L
∥∇f(xk)∥2

which implies

f(xk+1) ≤ f(x⋆) + L

2
(
∥xk − x⋆∥2 − ∥xk+1 − x⋆∥2

)
.
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Proof

Summing over k = 0, . . . , T − 1 gives

T −1∑
k=0

(f(xk+1)− f⋆) ≤ L

2 ∥x
0 − x⋆∥2.

Since f(xk) is nonincreasing,

f(xT )− f⋆ ≤ 1
T

T −1∑
k=0

(f(xk+1)− f⋆).

Therefore,
f(xT )− f⋆ ≤ L

2T
∥x0 − x⋆∥2.
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Strongly Convex Functions

f is µ-strongly convex if

f(y) ≥ f(x) +∇f(x)⊤(y − x) + µ

2 ∥y − x∥22,

Equivalent second-order characterization
•

∇2f(x) ⪰ µI, ∀x (for twice differentiable functions)
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Linear convergence of gradient descent

Theorem 6 (Linear convergence for m-strongly convex and
L-smooth f)
Let f : Rd → R be differentiable, m-strongly convex, and L-smooth.
Consider gradient descent with constant stepsize η = 1/L:

xk+1 = xk − 1
L
∇f(xk).

Let x⋆ ∈ arg minx f(x) and f⋆ := f(x⋆). Then for all k ≥ 0,

f(xk+1)− f⋆ ≤
(

1− m

L

) (
f(xk)− f⋆).

Consequently, after T iterations,

f(xT )− f⋆ ≤
(

1− m

L

)T (
f(x0)− f⋆).
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A Key Lemma

Lemma 7
Let f be continuously differentiable and m-strongly convex. Then the
following inequalities hold:

f(x)− f(x⋆) ≤ ∥∇f(x)∥2

2m
,

and
∥x− x⋆∥ ≤ 2

m
∥∇f(x)∥.
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Proof

Suppose f is m-strongly convex. Minimizing both sides of the strong
convexity inequality with respect to z, we obtain

f(x⋆) ≥ f(x)−∇f(x)⊤
( 1

m
∇f(x)

)
+ m

2

∥∥∥ 1
m
∇f(x)

∥∥∥2
.

Simplifying,
f(x⋆) = f(x)− 1

2m
∥∇f(x)∥2.

Rearranging the previous inequality yields

∥∇f(x)∥2 ≥ 2m
(
f(x)− f(x⋆)

)
.
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Distance to Optimum via Gradient
We estimate the distance to the optimizer x⋆ using strong convexity
and the Cauchy–Schwarz inequality.
From strong convexity,

f(x⋆) ≥ f(x) +∇f(x)⊤(x⋆ − x) + m

2 ∥x− x⋆∥2.

Applying Cauchy–Schwarz,

∇f(x)⊤(x⋆ − x) ≥ −∥∇f(x)∥ ∥x⋆ − x∥.

Therefore,

f(x⋆) ≥ f(x)− ∥∇f(x)∥ ∥x⋆ − x∥+ m

2 ∥x− x⋆∥2.

Rearranging the previous inequality yields

∥x− x⋆∥ ≤ 2
m
∥∇f(x)∥.
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Proof of the Theorem
By smoothness, we have

f(xk+1) = f

(
xk − 1

L
∇f(xk)

)
≤ f(xk)− 1

2L
∥∇f(xk)∥2.

By strong convexity,

f(xk+1) ≤ f(xk)− m

L

(
f(xk)− f⋆),

where f⋆ = f(x⋆). Subtracting f⋆ from both sides yields the
recursion

f(xk+1)− f⋆ ≤
(

1− m

L

) (
f(xk)− f⋆).

Thus, the function values converge linearly to the optimum.
After T iterations,

f(xT )− f⋆ ≤
(

1− m

L

)T (
f(x0)− f⋆).
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Iteration Complexity of Gradient Descent

Setting Goal Iterations Required

Smooth nonconvex ∥∇f(xk)∥ ≤ ε O
(

1
ε2

)
Convex f(xk)− f⋆ ≤ ε O

(
1
ε

)
Strongly convex f(xk)− f⋆ ≤ ε O

(
log 1

ε

)

• Higher curvature assumptions ⇒ faster convergence.

• Strong convexity yields linear convergence.
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Polyak– Lojasiewicz Inequality

Definition 8 (Polyak– Lojasiewicz (PL))
Let f : Rd → R be continuously differentiable and let α > 0. We say
that f satisfies the PL inequality with constant α if

∥∇f(x)∥22 ≥ 2α
(
f(x)− f⋆), ∀x ∈ Rd,

where f⋆ := minx f(x) (equivalently, f⋆ = f(x⋆) for any minimizer
x⋆).

• A first-order condition: controls suboptimality by gradient
magnitude.
• Does not require convexity.

Gradient Descent 0-25



Strong Convexity Implies PL Condition

Lemma 9 (Strong convexity ⇒ PL)
Let f : Rd → R and let α > 0. If f is α-strongly convex, then f
satisfies the PL inequality with constant α.
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PL Condition Does Not Imply Convexity

Consider
f(x) = x2 + 3 sin2(x), x ∈ R.

• Nonconvex:

f ′′(x) = 2 + 6 cos(2x), f ′′(π/2) = −4 < 0.

• PL holds:
f ′(x) = 2x + 3 sin(2x), f⋆ = 0,

and one can show

|f ′(x)|2

2f(x) ≥ 0.0001.
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A Picture Proof
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Convergence Under the PL Condition

Theorem 10 (Linear rate under PL + smoothness)
Assume f is L-smooth and satisfies the PL inequality

∥∇f(x)∥22 ≥ 2µ
(
f(x)− f⋆).

With constant stepsize ηt ≡ η = 1
L , gradient descent satisfies

f(xt)− f⋆ ≤
(

1− µ

L

)t (
f(x0)− f⋆).

• Linear convergence of objective values.
• PL does not imply a unique minimizer (only f(xt)→ f⋆)

cf. strong covnexity
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Example: Over-Parameterized Linear Regression

• Data: {(ai, yi)}mi=1 with ai ∈ Rn, yi ∈ R.
• Least squares objective:

min
x∈Rn

f(x) = 1
2

m∑
i=1

(a⊤
i x− yi)2 = 1

2∥Ax− y∥22, A =

a⊤
1
...

a⊤
m

 .

Over-parameterization: n > m (more parameters than
samples).

— a regime of particular importance in modern ML —
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Example: Over-Parameterized Linear Regression

∇f(x) = A⊤(Ax− y), ∇2f(x) = A⊤A.

• f is convex, but not strongly convex when n > m since A⊤A is
rank-deficient.
• In many non-degenerate cases, the system is consistent and

f⋆ = 0.

• Nevertheless, f satisfies a PL inequality (with constant
depending on AA⊤).

=⇒ Gradient descent achieves a linear rate in objective value.
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Example: Over-Parameterized Linear Regression

Fact 2.6 (linear rate)
Assume A ∈ Rm×n has rank m and take a constant stepsize

ηt ≡ η = 1
λmax(AA⊤) .

Then gradient descent satisfies, for all t,

f(xt)− f⋆ ≤
(

1− λmin(AA⊤)
λmax(AA⊤)

)t (
f(x0)− f⋆).

• Mild condition on {ai} (full row rank).
• No condition on {yi}.
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Proof of Fact 2.6

Key step: prove the PL inequality

∥∇f(x)∥22 ≥ 2 λmin(AA⊤) f(x). (2.9)

Once (2.9) holds, Theorem (PL + smoothness) implies the linear
rate. Here f⋆ = 0.

Let f(x) = 1
2∥Ax− y∥22, so ∇f(x) = A⊤(Ax− y). Then

∥∇f(x)∥22 = (Ax− y)⊤AA⊤(Ax− y)
≥ λmin(AA⊤) ∥Ax− y∥22
= 2 λmin(AA⊤) f(x),

which is exactly (2.9) with µ = λmin(AA⊤).
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Convergence in Iterates
What About ∥xt − x⋆∥2?



Strongly Convex and Smooth Problems

Theorem 11 (Gradient Descent for Strongly Convex and
Smooth Functions)
Let f be µ-strongly convex and L-smooth. If the step size is chosen as

ηt ≡ η = 2
µ + L

,

then gradient descent satisfies

∥xt − x⋆∥2 ≤
(

κ− 1
κ + 1

)t

∥x0 − x⋆∥2,

where
κ := L

µ

is the condition number and x⋆ is the global minimizer.
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Proof
Step 1: Fundamental theorem of calculus

∇f(xt) = ∇f(xt)−∇f(x⋆) =
(∫ 1

0
∇2f(xτ ) dτ

)
(xt − x⋆),

where
xτ := xt + τ(x⋆ − xt),

which parameterizes the line segment between xt and x⋆.
Step 2: One-step contraction
Using the GD update xt+1 = xt − η∇f(xt):

∥xt+1 − x⋆∥2 = ∥xt − x⋆ − η∇f(xt)∥2

=
∥∥∥∥(I − η

∫ 1

0
∇2f(xτ ) dτ

)
(xt − x⋆)

∥∥∥∥
2

≤ sup
0≤τ≤1

∥I − η∇2f(xτ )∥2 ∥xt − x⋆∥2.
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Proof

Step 3: Use smoothness and strong convexity
Since

µI ⪯ ∇2f(xτ ) ⪯ LI,

and η = 2
µ+L , we obtain

∥I − η∇2f(xτ )∥2 ≤
L− µ

L + µ
.

Conclusion:

∥xt+1 − x⋆∥2 ≤
L− µ

L + µ
∥xt − x⋆∥2.

Iterating yields linear convergence.
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Convex and smooth problems

∥xt − x⋆∥2 is monotonically nonincreasing in t

Formal Statement
Treating f as 0-strongly convex (i.e., convex), our previous analysis
implies

∥xt+1 − x⋆∥2 ≤ ∥xt − x⋆∥2,

provided the step size satisfies ηt ≤ 1
L .
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Distance Decrease for Convex and Smooth
Functions

Fact (Monotonic Improvement of Iterates)
Let f be convex and L-smooth. If the step size is chosen as

ηt ≡ η = 1
L

,

then gradient descent satisfies

∥xt+1 − x⋆∥22 ≤ ∥xt − x⋆∥22 −
1

L2 ∥∇f(xt)∥22,

where x⋆ is any minimizer of f .
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Proof of Distance Decrease (Fact 2.8)
Since ∇f(x⋆) = 0, we have

∥xt+1 − x⋆∥2
2 = ∥xt − x⋆ − η(∇f(xt)−∇f(x⋆))∥2

2

= ∥xt − x⋆∥2
2 − 2η⟨xt − x⋆,∇f(xt)−∇f(x⋆)⟩

+ η2∥∇f(xt)−∇f(x⋆)∥2
2.

Use convexity + smoothness:
For convex and L-smooth f ,

⟨xt − x⋆,∇f(xt)−∇f(x⋆)⟩ ≥ 1
L
∥∇f(xt)−∇f(x⋆)∥2

2.

Therefore,

∥xt+1 − x⋆∥2
2 ≤ ∥xt − x⋆∥2

2 −
2η

L
∥∇f(xt)−∇f(x⋆)∥2

2

+ η2∥∇f(xt)−∇f(x⋆)∥2
2.

Plug in η = 1/L:

∥xt+1 − x⋆∥2
2 = ∥xt − x⋆∥2

2 −
1

L2 ∥∇f(xt)∥2
2.Gradient Descent 0-40



Backtracking Line Search



Why Backtracking Line Search?

• Constant step size η = 1/L needs (an estimate of) L.
• In practice L is unknown; too large η can cause

oscillation/divergence.
• Idea: start with a candidate step size and shrink it until we get a

guaranteed decrease in f .

Goal
Pick ηt adaptively so that each step makes measurable progress:

f(xt+1) ≤ f(xt)− (something positive).
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Backtracking Line Search: Armijo Condition

Descent direction
Take the gradient step direction

dt = −∇f(xt), xt+1 = xt + ηtd
t.

Armijo (sufficient decrease) condition
Choose ηt such that

f(xt + ηtd
t) ≤ f(xt) + c ηt⟨∇f(xt), dt⟩,

where c ∈ (0, 1).

• For dt = −∇f(xt), this becomes

f(xt − ηt∇f(xt)) ≤ f(xt)− c ηt∥∇f(xt)∥2.

• Easy to check: evaluate f(·) at the trial point.
Gradient Descent 0-43



Algorithm: Backtracking (Gradient Descent)

Inputs
Initial step η0 > 0, shrink factor β ∈ (0, 1), Armijo parameter c ∈ (0, 1).

At iteration t
1 Set η ← η0 (or reuse previous step size).
2 While Armijo fails:

f(xt − η∇f(xt)) > f(xt)− c η∥∇f(xt)∥2,

update η ← βη.
3 Set xt+1 = xt − η∇f(xt) and ηt = η.

Typical choices
β = 0.5 or 0.8, c = 10−4.
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Why It Works: Finite Termination (Smooth Case)
Assume f is L-smooth. Then for any x and any η > 0,

f(x− η∇f(x)) ≤ f(x)− η
(
1− Lη

2
)
∥∇f(x)∥2.

• If η ≤ 1
L , then 1− Lη

2 ≥
1
2 , so

f(x− η∇f(x)) ≤ f(x)− η

2∥∇f(x)∥2.

• Therefore Armijo holds automatically whenever
η

2 ≥ c η ⇐⇒ c ≤ 1
2 ,

and η ≤ 1/L.

Conclusion
Backtracking will stop after finitely many shrink steps and returns a
step size ηt that guarantees descent.
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What Guarantees Do We Get?

With Armijo backtracking on L-smooth f (using dt = −∇f(xt)):
• Monotone decrease: f(xt+1) ≤ f(xt).
• Sufficient decrease:

f(xt+1) ≤ f(xt)− c ηt∥∇f(xt)∥2.

• Summing over t yields∑
t≥0

ηt∥∇f(xt)∥2 < ∞ ⇒ ∥∇f(xt)∥ → 0 (under mild conditions).

Key message
Backtracking gives automatic step-size selection with provable
progress, without knowing L.
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Backtracking Line Search
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Preconditioned Gradient Descent



Quadratic Optimization: Rate with Stepsize 1/L

Consider
f(x) = 1

2x⊤Qx, Q = Q⊤ ≻ 0.

Let 0 < µ = λmin(Q) ≤ λmax(Q) = L. Then gradient descent with
η = 1

L satisfies

f(xt)− f⋆ ≤
(

1− µ

L

)t (
f(x0)− f⋆).

• Linear rate governed by condition number κ = L/µ.
• Same form as PL rate (quadratics satisfy PL with µ = λmin(Q)).
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Exact Line Search

Idea: pick the stepsize that minimizes f along the descent direction.

Given xt, take dt := −∇f(xt) and choose

ηt ∈ arg min
η≥0

f(xt + ηdt) ⇐⇒ ηt ∈ arg min
η≥0

f(xt − η∇f(xt)).

Update:
xt+1 = xt − ηt∇f(xt).

• Guarantees monotone decrease: f(xt+1) ≤ f(xt).
• Parameter-free stepsize; especially clean for quadratics.
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Exact Line Search for Quadratic Objectives

Consider
f(x) = 1

2x⊤Qx, Q = Q⊤ ⪰ 0.

Let gt := ∇f(xt) = Qxt. Exact line search solves

ηt ∈ arg min
η≥0

f(xt − ηgt).

Closed-form stepsize

ηt = ∥gt∥22
(gt)⊤Qgt

.

• A 1D convex quadratic in η.
• If Q ≻ 0, the unique minimizer is x⋆ = 0.
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Exact Line Search: Convergence Rate (Quadratic)

Let Q ≻ 0 with eigenvalues 0 < λn(Q) ≤ · · · ≤ λ1(Q). If

ηt = arg min
η>0

f(xt − η∇f(xt)), f(x) = 1
2x⊤Qx,

then
f(xt)− f⋆ ≤

(
λ1(Q)− λn(Q)
λ1(Q) + λn(Q)

)2t (
f(x0)− f⋆).

• Objective-value rate; depends on κ = λ1/λn via κ−1
κ+1 .

• Not faster (in worst case) than the constant stepsize rule.
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Exact Line Search: Proof Sketch
Let x⋆ = 0 and gt = ∇f(xt) = Qxt. Exact line search yields

ηt = (gt)⊤gt

(gt)⊤Qgt
.

Compute

f(xt+1) = 1
2(xt − ηtg

t)⊤Q(xt − ηtg
t)

= f(xt)− ηt∥gt∥22 + η2
t

2 (gt)⊤Qgt

= f(xt)− ∥gt∥42
2(gt)⊤Qgt

=
(

1− ∥gt∥42
(gt)⊤Qgt · (gt)⊤Q−1gt

)
f(xt),

using f(xt) = 1
2(gt)⊤Q−1gt.
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Exact Line Search: Proof Sketch (cont.)

Kantorovich inequality: for all y ̸= 0,

∥y∥42
(y⊤Qy)(y⊤Q−1y) ≥

4λ1(Q)λn(Q)
(λ1(Q) + λn(Q))2 .

Apply it with y = gt:

f(xt+1) ≤
(

1− 4λ1(Q)λn(Q)
(λ1(Q) + λn(Q))2

)
f(xt) =

(
λ1(Q)− λn(Q)
λ1(Q) + λn(Q)

)2
f(xt).

Since f⋆ = 0, iterating gives the stated rate. □
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Preconditioning via Linear Transformations

Ill-conditioned problems can slow down gradient methods.

A common remedy is to scale variables via a linear change of variables.

Consider minx∈Rn f(x) and let S be nonsingular. Define x = Sy and
g(y) := f(Sy).

min
x

f(x) ⇐⇒ min
y

g(y) = f(Sy).
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Preconditioning via Linear Transformations

By the chain rule,
∇g(y) = S⊤∇f(Sy).

Applying gradient descent to g:

yk+1 = yk − tkS⊤∇f(Syk).

Multiplying by S and letting xk = Syk gives

xk+1 = xk − tkSS⊤∇f(xk).
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Scaled Gradient Method

Define the scaling (preconditioning) matrix

D := SS⊤ ≻ 0.

Then the update becomes

xk+1 = xk − tkD∇f(xk).

Scaled gradient method

xk+1 = xk − tkD∇f(xk), D ≻ 0.

• Standard GD corresponds to D = I.
• Choosing D well can dramatically improve conditioning.
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Scaled Gradient is a Descent Method

If D ≻ 0 and ∇f(xk) ̸= 0, then −D∇f(xk) is a descent direction:

f ′(xk; −D∇f(xk)) = −∇f(xk)⊤D∇f(xk) < 0.

• Strict inequality uses positive definiteness of D.
• Any standard stepsize rule applies (constant, exact,

backtracking).
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Interpretation: Scaling Changes Geometry

Let x = D1/2y and define g(y) = f(D1/2y). Then

∇g(y) = D1/2∇f(x), ∇2g(y) = D1/2∇2f(x) D1/2.

• The curvature is transformed to the scaled Hessian
D1/2∇2f(x)D1/2.

• Choose D so the scaled Hessian is closer to I.
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Practical Remarks

• Stepsize tk can be chosen by:
◦ constant stepsize,
◦ exact line search,
◦ backtracking line search.

• In large-scale problems, D is often chosen diagonal (cheap to
store/apply).

• Allowing D = Dk to change over time motivates adaptive scaling
methods (AdaGrad / RMSProp / Adam) and quasi-Newton
ideas.
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Scaled Gradient Method: Template

Input
Tolerance ε > 0.

Initialization
Choose x0 ∈ Rn.

Iteration
For k = 0, 1, 2, . . . :

1 Pick Dk ≻ 0.
2 Choose tk by line search on g(t) = f(xk − tDk∇f(xk)).
3 Update xk+1 = xk − tkDk∇f(xk).
4 Stop if ∥∇f(xk+1)∥ ≤ ε.
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Why Scaling Helps

The convergence rate depends on the conditioning of the scaled
Hessian

D
1/2
k ∇

2f(xk)D1/2
k .

• Goal: make the scaled Hessian closer to I.
• When ∇2f(xk) ≻ 0, the ideal choice is

Dk = (∇2f(xk))−1,

yielding D
1/2
k ∇2f(xk)D1/2

k = I.
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Connection to Newton’s Method

If Dk = (∇2f(xk))−1, then

xk+1 = xk − tk(∇2f(xk))−1∇f(xk).

Newton step
With tk = 1,

xk+1 = xk − (∇2f(xk))−1∇f(xk).

Computationally, this requires solving the linear system

∇2f(xk) dk = ∇f(xk), xk+1 = xk − dk.
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Diagonal Scaling: Motivation

Full Hessian information may be too expensive.

A simple alternative is diagonal scaling:

Dk = diag(dk,1, . . . , dk,n).

• Cheap to store and apply.
• Helps when variables have very different magnitudes/units.
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Diagonal Scaling: A Natural Rule

A natural choice uses the diagonal of the Hessian:

(Dk)ii =
(
∇2f(xk)

)−1
ii

,

when (∇2f(xk))ii > 0.

With this choice, the scaled Hessian has unit diagonal:(
D

1/2
k ∇

2f(xk)D1/2
k

)
ii

= 1.

• Captures curvature coordinate-wise.
• Approximates Newton scaling using only diagonal information.
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