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Problem Setup

We consider unconstrained optimization problems of the form

Inin f(2),

where:
e f:R™ — R is continuously differentiable
e Gradient V f(x) is available

Goal: find a point z* such that V f(x*) = 0, which we assume exists.
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Descent Directions

Definition 1 (Descent Direction)

A vector d is a descent direction for f at x if

flz+td) < f(z)

for all sufficiently small ¢ > 0.

A simple sufficient characterization is given by the following result.

Lemma 2

If f is continuously differentiable in a neighborhood of x, then any
direction d such that

d"Vf(x) <0

is a descent direction.
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Steepest Descent Direction

Among all unit directions:

min Vf(z)'d
lldll=1 /(@)

Solution:

Vi)

IVf()ll

Therefore the steepest descent direction is:

d=-Vf(z)
(up to scaling)

Gradient Descent
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Gradient Descent Algorithm

Basic idea: move in the direction of negative gradient

Given an initial point 20, iterate:
2F =2k — 0, Vf(2b),

where:
e «y, > 0 is the step size (learning rate)

e £=0,1,2,...

Gradient descent is a first-order method: it uses only gradient information.
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Proximal View of Gradient Descent

Gradient descent can be viewed as:

1
k+1 _ : k NT/ .k )
o = argmin { £(21) + VS — )+ 5 lly = "1 -
N————

first-order approx. -
proximal term
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Smooth Functions

Definition 3
f is L-smooth if

IVf(x) = Vi)l < Liz -yl

for all x,y.

Equivalent inequality:

L
f) < f@)+ V@) (=) + 5y -
Second-order characterization

V2f(z)|2 < L, Va  (for twice differentiable functions)
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Descent Lemma

Lemma 4 (Smoothness Upper Bound)
Assume f is L-smooth. Then for any x, direction d, and stepsize «,

Lo

flz+ad) < f(x) +aVf(z) d+ - IIdH2

This follows from Taylor expansion and Lipschitz continuity of the
gradient.
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Applying the Descent Lemma

Choose the gradient descent direction:

d=-Vfx).

Substitute into the lemma:
2 La? 2
fla —aVf(z)) < f(z) — o V()" + =~ IV ()]
The right-hand side is minimized at

1
T

o =

Then gradient descent satisfies:

£ = £ = 1916 < £68) = 5L VIR
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Aggregating the One-Step Decrements

From the one-step descent inequality,

P < Fab) — IV

assume f is lower bounded:

flx) > f.
Summing over £k =0,...,T — 1 and telescoping gives
flaT) < Z IV £(*) )12

Using f(2T) > f, we obtain
T-1

D IVFE)? < 2L(f(2°) — ).

k=0
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Asymptotic Stationarity

From bounded sum:

Z IV F("))* <

it follows that

lim ||V f(z")|| = 0
k—o0

Interpretation

Gradient descent converges to a stationary point (not necessarily
global minimum).
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Rate of Convergence

From averaging:

min ||V f(z")|? < Z IV (=)

0<k<T -1

Using previous bound:

2L 0y _ £
o IVFEh < <f<T>f>

This gives an O(T~1/2) stationarity rate.

0-13
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Convex and Smooth Functions

We now assume:
e f is convex
e fis L-smooth

e Global minimizer x™* exists

Define optimal value:

fr=r@)
We analyze gradient descent with constant stepsize
1
o= —.
L
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Convergence Rate (Convex Case)

Theorem 5 [

Suppose f is convex and L-smooth, and let x* be a minimizer. Then
gradient descent with stepsize « = 1/L satisfies:

* L *
f(xT)_f Sﬁ”'xo_'xHQ? T:1327
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Proof

By convexity,

f(@") > f@)+Vf(h) T (@7 —a?) = V(") T (@h ") > f(a")- 1"
Combining with descent:

P < fa) + VT (@~ at) - V)
which implies

P < ) + 5 (I — a2 = 4+ =2 P).
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Proof

Summing over k =0,...,T — 1 gives

T-1

S (Fa) - ) < Tl — 2

k=0

Since f(x*) is nonincreasing,

Therefore,
L 0 * (12
< s — a2
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Strongly Convex Functions

f is p-strongly convex if
F) = f@) + V@) - a) + Sy - all3,

Equivalent second-order characterization

V2f(x) = ul, Vz  (for twice differentiable functions)
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Linear convergence of gradient descent

Theorem 6 (Linear convergence for m-strongly convex and
L-smooth f)

Let f : R® — R be differentiable, m-strongly convex, and L-smooth.
Consider gradient descent with constant stepsize n = 1/L:

1
Pt = ab — ZVf(2").
L
Let x* € argmin, f(x) and f* := f(x*). Then for all k > 0,
fe - < (1- ) (6 - 1)
Consequently, after T' iterations,

s -5 (1-7) (e - )
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A Key Lemma

Lemma 7
Let f be continuously differentiable and m-strongly convex. Then the
following inequalities hold:
Vf(x)|?
fla) - fat) < V@I

2m

and 5
—2Fl < = .
lz =¥ < IV f()l]
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Proof

Suppose f is m-strongly convex. Minimizing both sides of the strong
convexity inequality with respect to z, we obtain

f@) = f@) - Vi@ (- Vi@) + 5] Vi@

Simplifying, .
fl@®) = f(z) - %va(w)\lz

Rearranging the previous inequality yields

IVF@)I* > 2m(f(z) - f(a*)).
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Distance to Optimum via Gradient

We estimate the distance to the optimizer x* using strong convexity
and the Cauchy-Schwarz inequality.

From strong convexity,

(@) > f(@) + Vi@ (@ =)+ Zlle - 2|
Applying Cauchy—Schwarz,

Vi) (@* —x) = = |V f(@)|| |l=* — ]|

Therefore,

f@®) = f() = [V f(2)|[l" — | + %Hx — |
Rearranging the previous inequality yields

2
lz =" < —[IVf(@)l
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Proof of the Theorem

By smoothness, we have
1 1
£ = £ = L1 < £68) = 5L V)P
L 2L
By strong convexity,

Fa) < fab) = () = f),
where f* = f(a*). Subtracting f* from both sides yields the

recursion
m

£k = < (1= ) () - ).
Thus, the function values converge linearly to the optimum.
After T iterations,
m

s -5 (1-7) (6 - )
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Iteration Complexity of Gradient Descent

Setting Goal Iterations Required
Smooth nonconvex ||V f(zF)|| <e (9(12>

€

1
Convex f(zF) — f*<e (9(6)
Strongly convex flzF) — f*<e O(log i)

e Higher curvature assumptions = faster convergence.

e Strong convexity yields linear convergence.
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Polyak—tojasiewicz Inequality

Definition 8 (Polyak—tojasiewicz (PL))

Let f: R? — R be continuously differentiable and let o > 0. We say
that f satisfies the PL inequality with constant « if

IVf @) > 2a(f(x) - f*), VeeR

where f* :=min, f(x) (equivalently, f* = f(x*) for any minimizer
x*).

e A first-order condition: controls suboptimality by gradient
magnitude.

e Does not require convexity.
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Strong Convexity Implies PL Condition

Lemma 9 (Strong convexity = PL)

Let f:RY — R and let o > 0. If f is a-strongly convex, then f
satisfies the PL inequality with constant c.

Gradient Descent
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PL Condition Does Not Imply Convexity

Consider
f(x) = 2% + 3sin’(z), z €R.

e Nonconvex:
f"(x) =2+ 6 cos(2x), f"(r/2) = -4 <.

e PL holds:
f'(z) =2z + 3sin(2x), f*=0,
and one can show

|f'()?
2f(x)

> 0.0001.

Gradient Descent 0-27



A Picture Proof

PL Ratio: (F'(x))*2 / (2(f(x) - )

Ratio
E=y

Gradient Descent
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Convergence Under the PL Condition

Theorem 10 (Linear rate under PL 4+ smoothness)

Assume f is L-smooth and satisfies the PL inequality

IVF (@) > 2u(f (=) - £*).

With constant stepsize ny =1 = % gradient descent satisfies

s -t < (124 e - ).

e Linear convergence of objective values.
e PL does not imply a unique minimizer (only f(z') — f*)
cf. strong covnexity

Gradient Descent
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Example: Over-Parameterized Linear Regression

e Data: {(a;,y:) 1" with a; € R", y; € R.

e Least squares objective:

.
1 & 1 “

. T 2 2 :
S Te — )2 = Z||Ax — A=|:

min J@) =53 (e =y = GlAr -yl ]
1= am

Over-parameterization: 7 >m  (more parameters than
samples).

— a regime of particular importance in modern ML —
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Example: Over-Parameterized Linear Regression

Vf(x)=A"(Az — ), Vif(x) = AT A

e f is convex, but not strongly convex when n > m since AT A is
rank-deficient.

e In many non-degenerate cases, the system is consistent and
fr=o.

e Nevertheless, f satisfies a PL inequality (with constant
depending on AAT).

— Gradient descent achieves a linear rate in objective value.
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Example: Over-Parameterized Linear Regression

Fact 2.6 (linear rate)
Assume A € R™*™ has rank m and take a constant stepsize

1
m="n= )\maX(AAT)

Then gradient descent satisfies, for all ¢,

. T\ ?
fah) -+ < (1—;M(i)> (f(z%) = f*).

max (AAT)

e Mild condition on {a;} (full row rank).

e No condition on {y;}.
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Proof of Fact 2.6

Key step: prove the PL inequality

IVF@)I3 > 2Amin(AAT) f(=). (2.9)

Once (2.9) holds, Theorem (PL + smoothness) implies the linear
rate. Here f* = 0.

Let f(z) = 3| Az — y||3, so Vf(z) = AT (Az —y). Then

IVf(@)||5 = (Az —y)TAAT (Ax — y)
Z )\min(AAT) HAJ" - yH%
= 2 A\min(AAT) f(x),

which is exactly (2.9) with p = Apin(AAT).
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Convergence in lterates
What About ||z’ — x*||5?



Strongly Convex and Smooth Problems

Theorem 11 (Gradient Descent for Strongly Convex and

Smooth Functions)
Let f be p-strongly convex and L-smooth. If the step size is chosen as

then gradient descent satisfies

k—1\*
ot = ol < (B Ia® = "l

where
L

is the condition number and x* is the global minimizer.
0-35
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Proof

Step 1: Fundamental theorem of calculus

Vi) = V1) - Vi) = / Vf(ar)dr ) ot = o)

where
r, =zt +7(a* — 2,

which parameterizes the line segment between z and z*.

Step 2: One-step contraction
Using the GD update z'™ = 2t — nV f(at):

2" = 2*[lp = [l — 2* - an( Il

:H(I—n v f(a:T)dT)(z — %)

2

IN

sup |1 =0V f(zr)|2 l|l2* — a*[|2-
0<r<1

Gradient Descent
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Proof

Step 3: Use smoothness and strong convexity
Since
pl X V2 f(xr) = LI,

and n = we obtain

_2
p+L?

I =nV2f(a)lls < 57—
Conclusion:

L —
||:Et+1— *”2 < :uth *

x

Iterating yields linear convergence.

Gradient Descent
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Convex and smooth problems

|2! — 2*||2 is monotonically nonincreasing in ¢

Formal Statement

Treating f as 0-strongly convex (i.e., convex), our previous analysis
implies

27 = 2* ]l <l = a*|le,

provided the step size satisfies 1 < %
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Distance Decrease for Convex and Smooth
Functions

Fact (Monotonic Improvement of Iterates)

Let f be convex and L-smooth. If the step size is chosen as

1
Nt nzz,

then gradient descent satisfies

1
2t — ot < ot 273 — - IVFE)IE,

where z* is any minimizer of f.
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Proof of Distance Decrease (Fact 2.8)

Since V f(z*) =0, we have
2t = 2*[|3 = [|l2" — 2* = n(Vf(z") = V()3
= ||=* —I*H% = 2(a’ — 2",V f(z") = Vf(a"))
+1? ||V f(z") = V)3

Use convexity 4+ smoothness:
For convex and L-smooth f,

(z! — 2" Vf(z') — Vf(z*)) > %HVf(wt) = VI3
Therefore,
2
o+ =23 < lla* — 23 = TV @) = VS ()3
+ 0PIV f(z") = V()5
Plug in n=1/L:

Gradient Descent
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Why Backtracking Line Search?

e Constant step size 7 = 1/L needs (an estimate of ) L.

e In practice L is unknown; too large 7 can cause
oscillation /divergence.

o ldea: start with a candidate step size and shrink it until we get a
guaranteed decrease in f.

Pick 7; adaptively so that each step makes measurable progress:

f(2'™) < f(a?) — (something positive).
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Backtracking Line Search: Armijo Condition

Descent direction
Take the gradient step direction

d=-Vfih), 2 =zt 4 npd.

Armijo (sufficient decrease) condition

Choose 7; such that

f@' +md') < (@) +en(V ("), d"),

where ¢ € (0,1).

e For d' = —V f(x'), this becomes
flat =mVf@h) < f(a) —em| VI
e Easy to check: evaluate f(-) at the trial point.
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Algorithm: Backtracking (Gradient Descent)

Initial step 19 > 0, shrink factor 8 € (0, 1), Armijo parameter ¢ € (0,1).

At iteration ¢

@ Set 1 < 1o (or reuse previous step size).

@ While Armijo fails:

f@t =V (') > f(z') —en|VF@))]?
update n < (7.
Q Set 2't! =2t — nVf(2?) and ny = 7.

Typical choices
B=050r08 c¢=10"%
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Why It Works: Finite Termination (Smooth Case)

Assume f is L-smooth. Then for any x and any n > 0,

Fa = Vi) < 1) (1~ 2|V r@)>

olfng%,thenl 77’2%

N
flo =0V f(@) < f@) = IV @)
e Therefore Armijo holds automatically whenever

gZCn <— cgi,

and n < 1/L.

Backtracking will stop after finitely many shrink steps and returns a
step size 1 that guarantees descent.
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What Guarantees Do We Get?

With Armijo backtracking on L-smooth f (using d' = —V f(z?)):
e Monotone decrease: f(z!*!) < f(zf).

o Sufficient decrease:
@) < fh) —en |V F (5]
e Summing over t yields

ZmHVf(xt)HZ < oo = |Vf(@")| — 0 (under mild conditions
>0

Key message
Backtracking gives automatic step-size selection with provable
progress, without knowing L.
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Backtracking Line Search

4 f(ﬂ'f‘t - T?Vf(ﬂ'f't))
‘s‘.‘- ....... ‘a'
-.\. ............... Ry
e oealf(@t) —an|VE(=)3
fa)=nlviEyE
>

acceptable
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Preconditioned Gradient Descent



Quadratic Optimization: Rate with Stepsize 1/L

Consider

f@)=1aT0r  Q=Q =0

Let 0 < = Amin(@) < Amax(Q) = L. Then gradient descent with
n= % satisfies

s -5 < (1) () - ).

e Linear rate governed by condition number k = L/ p.
e Same form as PL rate (quadratics satisfy PL with u = Apin(Q)).
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Exact Line Search

Idea: pick the stepsize that minimizes f along the descent direction.

Given z!, take d' := —V f(z') and choose
ne € argmin f(2' +nd") <= n € argmin f(z' — nVf(zh)).
n=20 120

Update:
xt+1 — 2t — ntvf(xt)‘

e Guarantees monotone decrease: f(z!*1) < f(zf).

e Parameter-free stepsize; especially clean for quadratics.
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Exact Line Search for Quadratic Objectives

Consider )
fl@)=52"Qz,  Q=Q" =0

Let g' := Vf(a!) = Qa'. Exact line search solves

ne € argmin f(z' —ngt).
n=>0

Closed-form stepsize

= g 113 _
(99)T Qg

e A 1D convex quadratic in 7.
o If Q > 0, the unique minimizer is * = 0.
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Exact Line Search: Convergence Rate (Quadratic)

Let @ > 0 with eigenvalues 0 < A\, (Q) < -+ <\ (Q). If

m=argmin f(2' —nVi@h),  f(@)= %HETQ%
then

t * Al(Q)_)\n(Q) 2 *
fl@) —fr < <)‘1(Q)+)‘n(Q)> (f(mo)_f)

k+1°

e Objective-value rate; depends on kK = A1/, via r—l
e Not faster (in worst case) than the constant stepsize rule.

Gradient Descent
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Exact Line Search: Proof Sketch

Let z* = 0 and ¢g' = Vf(z') = Qx*. Exact line search yields
= AN
(9) Qg

Compute
£ = 5t - ) Q! mg')
= f(= ) TItHQ HQ ( )TQQ

_ t Hg H

= /@)= 2(gt)T229t

— (1 o ||gt||% )f(xt)
(9T Qg" - (¢") Qg ’

using f (") = 5(¢")TQ 'g".

Gradient Descent
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Exact Line Search: Proof Sketch (cont.)

Kantorovich inequality: for all y # 0,

lyll5 o A@M(Q)
(¥ QYR 1Y) — (M(Q)+ (@))%

Apply it with y = g%

D1 (QM(Q) t
qu»+M«wv>ﬂ$>

<)\1(Q> - An(@)>2 Flah).

t+1
st < (1- M(Q) F A(Q)

Since f* = 0, iterating gives the stated rate. O
gg
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Preconditioning via Linear Transformations

[ll-conditioned problems can slow down gradient methods.
A common remedy is to scale variables via a linear change of variables.

Consider mingegn f(x) and let S be nonsingular. Define z = Sy and

9(y) :== f(Sy).

min f(z) <<= ming(y) = f(Sy).
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Preconditioning via Linear Transformations

By the chain rule,
Voly) = STV f(Sy).

Applying gradient descent to g:
ka1 =Yk — trST V F(Syr).
Multiplying by S and letting x; = Sy gives

Tpi1 = 2 — tpSS TV f(x).
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Scaled Gradient Method

Define the scaling (preconditioning) matrix
D:=SST 0.
Then the update becomes

Tpg1 = T — LDV f(2p).

Scaled gradient method

Tpy1 = Tk — tkDVf(xk), D = 0.

e Standard GD corresponds to D = I.

e Choosing D well can dramatically improve conditioning.
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Scaled Gradient is a Descent Method

If D> 0and Vf(x)#0, then —DV f(x) is a descent direction:

f(xg; =DV f(21)) = =V f(21) " DV f(xx) < 0.

e Strict inequality uses positive definiteness of D.

e Any standard stepsize rule applies (constant, exact,
backtracking).
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Interpretation: Scaling Changes Geometry

Let 2 = D2y and define g(y) = f(D'/?y). Then
Vg(y) = D'V f(z),  VZ¢(y) = DY*V*f(z) D'/
e The curvature is transformed to the scaled Hessian

D'/2V2 f(x)DV/2.

e Choose D so the scaled Hessian is closer to I.

Gradient Descent

0-59



Practical Remarks

e Stepsize t; can be chosen by:

o constant stepsize,
o exact line search,
o backtracking line search.

e In large-scale problems, D is often chosen diagonal (cheap to
store/apply).

e Allowing D = Dy, to change over time motivates adaptive scaling
methods (AdaGrad / RMSProp / Adam) and quasi-Newton
ideas.
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Scaled Gradient Method: Template

Tolerance € > 0.

Initialization
Choose xy € R".

For k=0,1,2,...:
Q Pick Dy > 0.
@ Choose t;, by line search on g(t) = f(xr — tDEV f(xk)).
@ Update zy11 =z — tx DV f (21,).
Q Stop if ||V f(wksn)| < <.

\
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Why Scaling Helps

The convergence rate depends on the conditioning of the scaled
Hessian )
1 1/2
D}*V2 f(x1,) D,

e Goal: make the scaled Hessian closer to I.
e When V2f(x;,) = 0, the ideal choice is

Dy = (V*f(ak) ™,

yielding D}/*V2 f(ay)Dy/* = 1.

Gradient Descent
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Connection to Newton’s Method

If Dy = (VQf(xk))_l, then

T1 =z — (V2 f(21)) 7V f ().

Newton step
With ¢, =1,

Tep1 = xx — (V2 f(21) 7'V (2).

Computationally, this requires solving the linear system

V2 f(xy) d, = Vf(z), Tpy1 = T — dy.
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Diagonal Scaling: Motivation

Full Hessian information may be too expensive.

A simple alternative is diagonal scaling:

Dy, = diag(dy,1, - - -, di.n)-

e Cheap to store and apply.

e Helps when variables have very different magnitudes/units.
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Diagonal Scaling: A Natural Rule

A natural choice uses the diagonal of the Hessian:
(Dr)ii = (VZf(l‘k))n )

when (VQf(xk))m > 0.

With this choice, the scaled Hessian has unit diagonal:

(Dy*V2f(ax)Dy%) . = 1.

(22

e Captures curvature coordinate-wise.

e Approximates Newton scaling using only diagonal information.
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