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An optimization problem

We write an optimization problem in the form

zeC

where
e 1 € R"™ are the decision variables,
e f:R™ — R is the objective function,
e C C R™ is the constraint/feasible set.

Optimal solution: z* € C such that

fz*) < f(x) VzxeCl.
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Examples

e least-squares and its regularized variants
e Matrix completion

e Empirical risk minimization and deep learning
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Least-squares regression

Given data (a;,b;)) €e R" xR, i =1,...,k, solve

k
1 T 2
—_— T b
i o 2w~ b)
Equivalently,
1
min o ||z - b|3
reR™
where
af b1
A= S b=
a; bk

Interpretation: fit a linear model by minimizing squared prediction
error.
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Least-squares: geometric view

e Az lies in the column space of A

e We are projecting b onto col(A)

v* =argmin Az — by <= Az* =ea)d

Key property: smooth, convex objective with a unique minimizer
(when AT A is invertible).
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Solving least-squares

Optimality condition:
AT(Az —b)=0 <= ATAz=ATb
Closed-form solution (when invertible):

= (ATA)1ATy

e Reliable and efficient numerical algorithms exist
e Computation depends on problem size and structure

e This is a mature optimization problem
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Why regularize?

Least squares can behave poorly when:
e features are highly correlated
e n is large relative to k

e data is noisy

Symptoms:
e large coefficients

e unstable predictions
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Ridge regression

1
min ||z — blI3 + All[3
z€R™

e )\ > 0 controls the strength of regularization

e Penalizes large coefficients

Equivalent view:

min | Az - b3 st [all3 <t
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Properties of ridge regression

e Objective is smooth and strongly convex
e Unique solution always exists

e Closed-form solution:
ot = (ATA+2kA)7TATD
e Improves numerical stability

Tradeoff: bias vs variance.
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Lasso

1
min —HAQU b||§+)\|]x\|1
TER?

o llzlh = 227 [l

e Encourages sparse solutions
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Why does Lasso promote sparsity?

e (1 penalty has corners
e Optimal solutions often occur at corners

e Corners correspond to zero coordinates

Consequence: automatic variable selection.
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Optimization perspective

e Objective is convex but non-smooth
e No closed-form solution

e Requires iterative algorithms

Key lesson: changing the regularizer changes both
e statistical behavior

e optimization difficulty

Introduction to Optimization 0-12



Motivation: The Netflix Challenge

e Netflix wants to recommend movies to users

e Users rate only a small fraction of movies

e Goal: predict missing ratings accurately

e This became the famous Netflix Prize problem

Key question: How do we infer a large number of missing entries
from very few observations?

Introduction to Optimization 0-13



Data as a Matrix

o Let M € R™*™

o Rows = users
o Columns = movies
o M;; = rating user % gives movie j

e We observe only entries in a set €2

Qc{l,...,n} x{1,...

Task: Predict M;; for (i,j) ¢ Q

Introduction to Optimization

0-14



Why Is This Hard?

e The matrix is huge (millions of users, thousands of movies)
e Most entries are missing (over 99%)

e Naively fitting all entries is impossible

Key insight: User preferences are structured
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Low-Rank Structure

Users can be described by a few latent factors
o e.g. action vs romance, comedy vs drama

e Movies are also described by the same factors

M~UVT

e U € R™" (user factors)
e V € R™*" (movie factors)
e 7 < min(n,m)

Conclusion: M is approximately low rank
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Matrix Completion Problem

We only observe M;; for (i, j) € €.

Ideal formulation:

m}}n rank(X) st X = M, (i,7) € Q

e Matches observed ratings exactly

e Chooses the simplest (lowest-rank) explanation
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Why Rank Minimization Is Hard

e Rank is:

o Non-convex
o Discontinuous
o NP-hard to optimize

e Not suitable for large-scale problems

Optimization lesson: We often replace hard objectives with
tractable surrogates
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Convex Relaxation: Nuclear Norm

e Replace rank with the nuclear norm
1X ] =" or(X)
k

e 0 (X) = singular values

e Convex envelope of rank on bounded sets

Convex formulation:

min [ X[l st Xi; =My, (i,j) €9
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Noisy Observations

In practice:
e Ratings are noisy

e Exact fitting is undesirable

Regularized formulation:
1
min — Z (Xz — Mij)2 + )\HXH*
X 2 4
(i,5)€

e Data fitting term

e Complexity control via nuclear norm
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Alternative: Factorized Formulation

Instead of optimizing over X directly:
X=0v"
min (u] v — Mij)* + A(IU[1E + IVIIE)
T (4,5)€Q

e Non-convex
e Much more scalable

e Used in practice by Netflix teams
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Clustering example: communities in networks

e Data: a graph of interactions (friendships, emails, citations)
e Goal: partition nodes into clusters/communities

e Application: social networks, biology, recommender systems

Input: adjacency matrix A € {0,1}"*", where A;; = 1 if there is an
edge.

Introduction to Optimization 0-22



Stochastic Block Model (SBM)

e Each node has a hidden label z; € {1,2} (community)
e Edges are generated independently given labels:

P(Ai; =1 2z = zj) = p, P(Aij =1]2 # 2j) = ¢
with p > ¢.

Inference goal: recover labels (z1,...,2,) from A.
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Optimization view: maximum likelihood

For balanced two-way clustering, let z € {£1}" encode labels
(z; = +1 vs —1), and enforce balance 17z = 0.

A common surrogate objective (related to likelihood / cut):

max x| Az
ze{+1}?, 1Tz=0

e Discrete, nonconvex optimization

e Direct search is impossible when n is large

Introduction to Optimization 0-24



Relaxation idea: from discrete to continuous

Relax the constraint = € {£1}" to a sphere constraint:

max x| Ax
||x\|§:n, 1Tz=0

This becomes an eigenvector problem:
e solution uses the top eigenvector of (centered) A

e then round by sign(z;)

Optimization lesson: discrete — relaxation — rounding.
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Empirical Risk Minimization (ERM)

Given data (z1,v1), ..., (Zn,yn), ERM solves

min Zz folw). vi)

0c® n

e O = model parameters
e fy = prediction function

e !/ = loss function

Unifying view: least squares, logistic regression, SVMs, neural
networks.

Introduction to Optimization 0-26



ERM includes familiar problems

e Least squares:

Ufolx),y) = 5(fo(x) —y)*,  folx) =0T

e Logistic regression:

((fo(x),y) = log(1 + exp(—y fo(z)))

e Regularization:
n

L SIORS

i=1

Same optimization template, different modeling choices.
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Deep learning = large-scale optimization

In deep learning:
e fp is a deep neural network
e 0 contains millions (or billions) of parameters

e The loss is typically nonconvex

i 3 (e )

Key fact: training a neural network is an optimization problem.
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Why optimization matters for deep learning

e Objective is nonconvex
e Data is massive

e Exact minimization is impossible

Yet simple methods like gradient descent work remarkably well.

Central questions:
e Why does optimization succeed?

e What structure are we exploiting?
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A recurring pattern

Start with a real-world problem

Formulate an optimization problem

Identify structure

Choose algorithms accordingly

This pattern will repeat throughout the course.
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Topics

Formulation: convex optimization, nonconvex optimization

Algorithms: gradient descent, Newton's method

e Applications: examples in data fitting, statistical estimation,
geometric problems, etc

Duality Theory
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