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An optimization problem

We write an optimization problem in the form

min
x∈C

f(x),

where
• x ∈ Rn are the decision variables,
• f : Rn → R is the objective function,
• C ⊆ Rn is the constraint/feasible set.

Optimal solution: x⋆ ∈ C such that

f(x⋆) ≤ f(x) ∀x ∈ C.
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Examples

• Least-squares and its regularized variants
• Matrix completion
• Empirical risk minimization and deep learning
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Least-squares regression

Given data (ai, bi) ∈ Rn × R, i = 1, . . . , k, solve

min
x∈Rn

1
2k

k∑
i=1

(a⊤
i x − bi)2

Equivalently,
min
x∈Rn

1
2k

∥Ax − b∥2
2,

where

A =

a⊤
1
...

a⊤
k

 , b =

b1
...

bk

 .

Interpretation: fit a linear model by minimizing squared prediction
error.
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Least-squares: geometric view

• Ax lies in the column space of A

• We are projecting b onto col(A)

x⋆ = arg min
x

∥Ax − b∥2 ⇐⇒ Ax⋆ = Πcol(A)b

Key property: smooth, convex objective with a unique minimizer
(when A⊤A is invertible).
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Solving least-squares

Optimality condition:

A⊤(Ax − b) = 0 ⇐⇒ A⊤Ax = A⊤b

Closed-form solution (when invertible):

x⋆ = (A⊤A)−1A⊤b

• Reliable and efficient numerical algorithms exist
• Computation depends on problem size and structure
• This is a mature optimization problem
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Why regularize?

Least squares can behave poorly when:
• features are highly correlated
• n is large relative to k

• data is noisy

Symptoms:
• large coefficients
• unstable predictions
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Ridge regression

min
x∈Rn

1
2k

∥Ax − b∥2
2 + λ∥x∥2

2

• λ > 0 controls the strength of regularization
• Penalizes large coefficients

Equivalent view:

min
x

∥Ax − b∥2
2 s.t. ∥x∥2

2 ≤ t
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Properties of ridge regression

• Objective is smooth and strongly convex
• Unique solution always exists
• Closed-form solution:

x⋆ = (A⊤A + 2kλI)−1A⊤b

• Improves numerical stability

Tradeoff: bias vs variance.
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Lasso

min
x∈Rn

1
2k

∥Ax − b∥2
2 + λ∥x∥1

• ∥x∥1 =
∑n

j=1 |xj |
• Encourages sparse solutions
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Why does Lasso promote sparsity?

• ℓ1 penalty has corners
• Optimal solutions often occur at corners
• Corners correspond to zero coordinates

Consequence: automatic variable selection.
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Optimization perspective

• Objective is convex but non-smooth
• No closed-form solution
• Requires iterative algorithms

Key lesson: changing the regularizer changes both
• statistical behavior
• optimization difficulty
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Motivation: The Netflix Challenge

• Netflix wants to recommend movies to users
• Users rate only a small fraction of movies
• Goal: predict missing ratings accurately
• This became the famous Netflix Prize problem

Key question: How do we infer a large number of missing entries
from very few observations?
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Data as a Matrix

• Let M ∈ Rn×m

◦ Rows = users
◦ Columns = movies
◦ Mij = rating user i gives movie j

• We observe only entries in a set Ω

Ω ⊂ {1, . . . , n} × {1, . . . , m}

Task: Predict Mij for (i, j) /∈ Ω
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Why Is This Hard?

• The matrix is huge (millions of users, thousands of movies)
• Most entries are missing (over 99%)
• Naively fitting all entries is impossible

Key insight: User preferences are structured
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Low-Rank Structure

• Users can be described by a few latent factors
◦ e.g. action vs romance, comedy vs drama

• Movies are also described by the same factors

M ≈ UV ⊤

• U ∈ Rn×r (user factors)
• V ∈ Rm×r (movie factors)
• r ≪ min(n, m)

Conclusion: M is approximately low rank
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Matrix Completion Problem

We only observe Mij for (i, j) ∈ Ω.

Ideal formulation:

min
X

rank(X) s.t. Xij = Mij , (i, j) ∈ Ω

• Matches observed ratings exactly
• Chooses the simplest (lowest-rank) explanation
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Why Rank Minimization Is Hard

• Rank is:
◦ Non-convex
◦ Discontinuous
◦ NP-hard to optimize

• Not suitable for large-scale problems

Optimization lesson: We often replace hard objectives with
tractable surrogates
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Convex Relaxation: Nuclear Norm

• Replace rank with the nuclear norm

∥X∥∗ =
∑

k

σk(X)

• σk(X) = singular values
• Convex envelope of rank on bounded sets

Convex formulation:

min
X

∥X∥∗ s.t. Xij = Mij , (i, j) ∈ Ω
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Noisy Observations

In practice:
• Ratings are noisy
• Exact fitting is undesirable

Regularized formulation:

min
X

1
2

∑
(i,j)∈Ω

(Xij − Mij)2 + λ∥X∥∗

• Data fitting term
• Complexity control via nuclear norm
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Alternative: Factorized Formulation

Instead of optimizing over X directly:

X = UV ⊤

min
U,V

∑
(i,j)∈Ω

(u⊤
i vj − Mij)2 + λ(∥U∥2

F + ∥V ∥2
F )

• Non-convex
• Much more scalable
• Used in practice by Netflix teams

Introduction to Optimization 0-21



Clustering example: communities in networks

• Data: a graph of interactions (friendships, emails, citations)
• Goal: partition nodes into clusters/communities
• Application: social networks, biology, recommender systems

Input: adjacency matrix A ∈ {0, 1}n×n, where Aij = 1 if there is an
edge.
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Stochastic Block Model (SBM)

• Each node has a hidden label zi ∈ {1, 2} (community)
• Edges are generated independently given labels:

P(Aij = 1 | zi = zj) = p, P(Aij = 1 | zi ̸= zj) = q

with p > q.

Inference goal: recover labels (z1, . . . , zn) from A.
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Optimization view: maximum likelihood

For balanced two-way clustering, let x ∈ {±1}n encode labels
(xi = +1 vs −1), and enforce balance 1⊤x = 0.

A common surrogate objective (related to likelihood / cut):

max
x∈{±1}n, 1⊤x=0

x⊤Ax

• Discrete, nonconvex optimization
• Direct search is impossible when n is large
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Relaxation idea: from discrete to continuous

Relax the constraint x ∈ {±1}n to a sphere constraint:

max
∥x∥2

2=n, 1⊤x=0
x⊤Ax

This becomes an eigenvector problem:
• solution uses the top eigenvector of (centered) A

• then round by sign(xi)

Optimization lesson: discrete → relaxation → rounding.
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Empirical Risk Minimization (ERM)

Given data (x1, y1), . . . , (xn, yn), ERM solves

min
θ∈Θ

1
n

n∑
i=1

ℓ
(
fθ(xi), yi

)
• θ = model parameters
• fθ = prediction function
• ℓ = loss function

Unifying view: least squares, logistic regression, SVMs, neural
networks.
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ERM includes familiar problems

• Least squares:

ℓ(fθ(x), y) = 1
2(fθ(x) − y)2, fθ(x) = θ⊤x

• Logistic regression:

ℓ(fθ(x), y) = log(1 + exp(−yfθ(x)))

• Regularization:
1
n

n∑
i=1

ℓ(·) + λ∥θ∥2

Same optimization template, different modeling choices.
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Deep learning = large-scale optimization

In deep learning:
• fθ is a deep neural network
• θ contains millions (or billions) of parameters
• The loss is typically nonconvex

min
θ

1
n

n∑
i=1

ℓ
(
fθ(xi), yi

)
Key fact: training a neural network is an optimization problem.
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Why optimization matters for deep learning

• Objective is nonconvex
• Data is massive
• Exact minimization is impossible

Yet simple methods like gradient descent work remarkably well.

Central questions:
• Why does optimization succeed?
• What structure are we exploiting?
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A recurring pattern

• Start with a real-world problem
• Formulate an optimization problem
• Identify structure
• Choose algorithms accordingly

This pattern will repeat throughout the course.
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Topics

• Formulation: convex optimization, nonconvex optimization

• Algorithms: gradient descent, Newton’s method

• Applications: examples in data fitting, statistical estimation,
geometric problems, etc

• Duality Theory
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