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Outline

• Optimization problems: basic notation and terminology
• Unconstrained optimization
• First- and second-order necessary conditions for optimality
• Second-order sufficient condition for optimality
• Least squares and its solution
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An Optimization Problem

We write an optimization problem in the form

min
x∈Ω

f(x),

where
• x ∈ Rn are the decision variables,
• f : Rn → R is the objective function,
• Ω ⊆ Rn is the constraint/feasible set.
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Local and Global Minimizers

Global minimizer:
x⋆ ∈ Ω is a global minimizer of f if

f(x) ≥ f(x⋆) ∀x ∈ Ω.

Local minimizer:

x⋆ ∈ Ω is a local minimizer of f if there exists a neighborhood N of
x⋆ such that

f(x) ≥ f(x⋆) ∀x ∈ N ∩ Ω.
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Strict Local Minimizer

Strict local minimizer:

x⋆ ∈ Ω is a strict local minimizer if there exists a neighborhood N of
x⋆ such that

f(x) > f(x⋆) ∀x ∈ N ∩ Ω, x ̸= x⋆.
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Unique Minimizer

Unique minimizer:

x⋆ is the unique minimizer if it is the only global minimizer of f .

f(x) ≥ f(x⋆) ∀x ∈ Ω, and equality holds only at x = x⋆.

Remark: Uniqueness is a global property, not a local one.
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Example: Minimization without a Minimizer

Example L1.1. Consider minimization of the following two functions,
both over their domains.
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Example 1: Unbounded Objective

f(x) = tan(x), Ω =
(

−π

2 ,
π

2

)
• As x → −π

2
+, f(x) → −∞

• Objective is unbounded below
• Values can be made arbitrarily small

⇒ No minimizer exists.
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Example 2: Lower Bounded but No Minimizer

f(x) = −10 + e−x, Ω = R

• f(x) ≥ −10 for all x

• Objective has a lower bound
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Why No Minimizer Exists

inf
x∈R

f(x) = −10

• For any x, and any x′ > x:

f(x′) < f(x)

• The infimum is approached as x → +∞
• But no finite x achieves it

⇒ No minimizer exists.
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Key Takeaways

• Minimization problems may fail to have solutions
• Two common failure modes:

◦ Objective is unbounded below
◦ Objective is bounded, but the infimum is not attained

• Existence of a minimizer requires more than smoothness
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Existence of Minimizers

Theorem 1 (Weierstrass extreme value theorem)
Let f : Ω → R be continuous and let Ω ⊂ Rn be nonempty and
compact (closed and bounded). Then there exists x⋆ ∈ Ω such that

f(x⋆) ≤ f(x) ∀x ∈ Ω.

Interpretation: under mild conditions, optimization problems
actually have solutions.
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Weierstrass Theorem (Compact Sublevel Sets)

Theorem 2
Let f be a continuous function defined on a set S. If f has a
nonempty and compact sublevel set C = {x ∈ S : f(x) ≤ α} for
some α ∈ R, then there exists x⋆ ∈ S such that
f(x⋆) = minx∈S f(x).

The compactness of the sublevel set (being nonempty, closed, and
bounded) ensures that the minimum value is attained and a global
minimizer exists in S.

Optimality Conditions 0-13



Unconstrained optimization

Unconstrained optimization refers to problems of the form

min
x∈Rn

f(x),

i.e., the decision variables are not constrained; only the objective
matters.
We aim to provide a simple means of determining whether a
particular point is a local or global solution
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Taylor’s Theorem

Taylor’s theorem explains how a smooth function can be
approximated locally by a polynomial.

The approximation depends on:
• the function value
• low-order derivatives of f

This local approximation is fundamental in optimization.
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First-order Taylor theorem (integral form)

Theorem 3
Let f : Rn → R be continuously differentiable. For any x, p ∈ Rn,

f(x + p) = f(x) +
∫ 1

0
∇f(x + γp)⊤p dγ.

Interpretation: the change in f is an accumulated directional
derivative along the line segment from x to x + p.
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First-order Taylor theorem (mean-value form)

Under the same assumptions, there exists some γ ∈ (0, 1) such that

f(x + p) = f(x) + ∇f(x + γp)⊤p.

Interpretation: locally, f behaves like a linear function evaluated at
an intermediate point.
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Second-order Taylor expansion: gradient

If f is twice continuously differentiable, then

∇f(x + p) = ∇f(x) +
∫ 1

0
∇2f(x + γp) p dγ.

The Hessian controls how the gradient changes locally.
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Second-order Taylor theorem

If f is twice continuously differentiable, then there exists some
γ ∈ (0, 1) such that

f(x + p) = f(x) + ∇f(x)⊤p + 1
2 p⊤∇2f(x + γp) p.

Interpretation:
• first-order term: linear approximation
• second-order term: curvature correction
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Terminology

•
f(x + p) = f(x) +

∫ 1

0
∇f(x + γp)⊤p dγ

is called the integral form of Taylor’s theorem.

•
f(x + p) = f(x) + ∇f(x + γp)⊤p

is called the mean-value form.
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Why Taylor’s theorem matters in optimization

Taylor expansions allow us to:
• approximate complicated objectives locally
• reason about descent directions
• design efficient algorithms
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First-order necessary condition

Assume f is continuously differentiable.

Theorem 4 (First-order necessary condition)
If x⋆ is an unconstrained local minimizer of f , then

∇f(x⋆) = 0.

A point satisfying ∇f(x) = 0 is called a stationary/critical point.

This condition is necessary but, in general, not sufficient. (With
convexity, it becomes sufficient for global optimality.)
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Proof Strategy

We prove by contradiction.
• Assume x⋆ is a local minimizer
• Suppose ∇f(x⋆) ̸= 0
• Show there exists a nearby point with strictly smaller function

value
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Proof: ∇f(x⋆) = 0 is Necessary

To prove by contradiction, assume x⋆ is a local minimizer but
∇f(x⋆) ̸= 0. Using a steepest descent step p = −α∇f(x⋆) and the
mean value form of Taylor’s theorem:

f(x⋆ − α∇f(x⋆)) = f(x⋆) − α∇f(x⋆ − γα∇f(x⋆))⊤∇f(x⋆)

for some γ ∈ (0, 1). By the continuity of the gradient, for sufficiently
small α > 0:

∇f(x⋆ − γα∇f(x⋆))⊤∇f(x⋆) ≥ 1
2∥∇f(x⋆)∥2

Substituting this back into the expansion yields:

f(x⋆ − α∇f(x⋆)) ≤ f(x⋆) − 1
2α∥∇f(x⋆)∥2 < f(x⋆)
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Second-order necessary condition

Assume f is twice continuously differentiable.

Theorem 5 (Second-order necessary condition)
If x⋆ is an unconstrained local minimizer of f , then

∇f(x⋆) = 0 and ∇2f(x⋆) ⪰ 0.

Interpretation: curvature at a local minimum cannot be “negative” in
any direction.
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Second-order conditions: linear algebra interlude

For twice differentiable f , the Hessian at x is ∇2f(x) (symmetric).

PSD/PD definitions
A symmetric matrix H is:

• positive semidefinite (psd) if v⊤Hv ≥ 0 for all v,
• positive definite (pd) if v⊤Hv > 0 for all v ̸= 0.

If A is not symmetric, one often considers its symmetric part
1
2(A + A⊤).
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Eigenvalue characterizations

Theorem 6
A symmetric matrix H is psd iff all eigenvalues of H are ≥ 0. It is pd
iff all eigenvalues are > 0.
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Proof

Suppose ∇2f(x⋆) is not positive semidefinite. Then there exists a
unit vector v such that v⊤∇2f(x⋆)v ≤ −λ for some λ > 0. Consider
x = x⋆ + αv. Since ∇f(x⋆) = 0, the second-order Taylor expansion
gives:

f(x⋆ + αv) = f(x⋆) + 1
2α2v⊤∇2f(x⋆ + γαv)v

for γ ∈ (0, 1). By continuity of the Hessian, for sufficiently small
α > 0:

v⊤∇2f(x⋆+γαv)v ≤ −λ

2 =⇒ f(x⋆+αv) ≤ f(x⋆)−1
4α2λ < f(x⋆)

This contradicts the local minimality of x⋆, hence ∇2f(x⋆) ⪰ 0.
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Second-order sufficient condition

Assume f is twice continuously differentiable.

Theorem 7 (Second-order sufficient condition)
If ∇f(x⋆) = 0 and ∇2f(x⋆) ≻ 0, then x⋆ is a strict local minimum.

Remarks (important):
• ∇2f(x⋆) ⪰ 0 is not sufficient for local optimality, e.g., f(x) = x3

• ∇2f(x⋆) ≻ 0 is not necessary for (even strict global) optimality,
e.g., f(x) = x4
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Proof: Second-Order Sufficient Condition
Since ∇2f(x⋆) ≻ 0 and the Hessian is continuous, there exist ρ > 0
and ϵ > 0 such that for any direction v:

v⊤∇2f(x⋆ + γp)v ≥ ϵ∥v∥2

for all steps ∥p∥ ≤ ρ and γ ∈ (0, 1).
Applying Taylor’s theorem at x⋆ for a step p with ∥p∥ ≤ ρ:

f(x⋆ + p) = f(x⋆) + ∇f(x⋆)⊤p + 1
2p

⊤∇2f(x⋆ + γp)p

Given the stationary point condition ∇f(x⋆) = 0, we substitute the
curvature bound:

f(x⋆ + p) ≥ f(x⋆) + 1
2ϵ∥p∥2

For all x ∈ N = {x : ∥x − x⋆∥ < ρ} where x ̸= x⋆, it follows that
f(x) > f(x⋆). This confirms x⋆ is a strict local minimizer.
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Least Squares: Gradient and Hessian via Taylor
Expansion

Consider the loss function f(x) = 1
2∥Ax − b∥2. To find the

derivatives, we expand f(x + p) and identify the linear and quadratic
terms in p:
f(x + p) = 1

2(A(x + p) − b)⊤(A(x + p) − b)
= 1

2((Ax − b) + Ap)⊤((Ax − b) + Ap)
= 1

2∥Ax − b∥2 + (Ax − b)⊤Ap + 1
2p

⊤A⊤Ap
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Cont’d

By comparing this to the Taylor series
f(x + p) = f(x) + ∇f(x)⊤p + 1

2p
⊤∇2f(x)p:

1. Gradient Identification:
The linear term is (Ax − b)⊤Ap = (A⊤(Ax − b))⊤p. Thus:

∇f(x) = A⊤(Ax − b)

2. Hessian Identification:
The quadratic term is 1

2p
⊤(A⊤A)p. Thus:

∇2f(x) = A⊤A
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Least squares: solution via optimality conditions

First-order optimality gives the normal equations:

A⊤Ax⋆ = A⊤b.

If A has full column rank, then A⊤A is invertible and

x⋆ = (A⊤A)−1A⊤b.
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