

Optimality Conditions

Cong Ma

University of Chicago, Winter 2026

Outline

- Optimization problems: basic notation and terminology
- Unconstrained optimization
- First- and second-order necessary conditions for optimality
- Second-order sufficient condition for optimality
- Least squares and its solution

An Optimization Problem

We write an optimization problem in the form

$$\min_{x \in \Omega} f(x),$$

where

- $x \in \mathbb{R}^n$ are the *decision variables*,
- $f : \mathbb{R}^n \rightarrow \mathbb{R}$ is the *objective function*,
- $\Omega \subseteq \mathbb{R}^n$ is the *constraint/feasible set*.

Local and Global Minimizers

Global minimizer:

$x^* \in \Omega$ is a *global minimizer* of f if

$$f(x) \geq f(x^*) \quad \forall x \in \Omega.$$

Local minimizer:

$x^* \in \Omega$ is a *local minimizer* of f if there exists a neighborhood \mathcal{N} of x^* such that

$$f(x) \geq f(x^*) \quad \forall x \in \mathcal{N} \cap \Omega.$$

Strict Local Minimizer

Strict local minimizer:

$x^* \in \Omega$ is a *strict local minimizer* if there exists a neighborhood \mathcal{N} of x^* such that

$$f(x) > f(x^*) \quad \forall x \in \mathcal{N} \cap \Omega, x \neq x^*.$$

Unique Minimizer

Unique minimizer:

x^* is the *unique minimizer* if it is the only global minimizer of f .

$$f(x) \geq f(x^*) \quad \forall x \in \Omega, \quad \text{and equality holds only at } x = x^*.$$

Remark: Uniqueness is a global property, not a local one.

Example: Minimization without a Minimizer

Example L1.1. Consider minimization of the following two functions, both over their domains.

Example 1: Unbounded Objective

$$f(x) = \tan(x), \quad \Omega = \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$

- As $x \rightarrow -\frac{\pi}{2}^+$, $f(x) \rightarrow -\infty$
- Objective is **unbounded below**
- Values can be made arbitrarily small

\Rightarrow **No minimizer exists.**

Example 2: Lower Bounded but No Minimizer

$$f(x) = -10 + e^{-x}, \quad \Omega = \mathbb{R}$$

- $f(x) \geq -10$ for all x
- Objective has a **lower bound**

Why No Minimizer Exists

$$\inf_{x \in \mathbb{R}} f(x) = -10$$

- For any x , and any $x' > x$:

$$f(x') < f(x)$$

- The infimum is approached as $x \rightarrow +\infty$
- But no finite x achieves it

\Rightarrow **No minimizer exists.**

Key Takeaways

- Minimization problems may fail to have solutions
- Two common failure modes:
 - Objective is **unbounded below**
 - Objective is bounded, but the infimum is not attained
- Existence of a minimizer requires more than smoothness

Existence of Minimizers

Theorem 1 (Weierstrass extreme value theorem)

Let $f : \Omega \rightarrow \mathbb{R}$ be continuous and let $\Omega \subset \mathbb{R}^n$ be nonempty and compact (closed and bounded). Then there exists $x^* \in \Omega$ such that

$$f(x^*) \leq f(x) \quad \forall x \in \Omega.$$

Interpretation: under mild conditions, optimization problems *actually have solutions*.

Weierstrass Theorem (Compact Sublevel Sets)

Theorem 2

Let f be a continuous function defined on a set S . If f has a nonempty and compact sublevel set $C = \{x \in S : f(x) \leq \alpha\}$ for some $\alpha \in \mathbb{R}$, then there exists $x^* \in S$ such that $f(x^*) = \min_{x \in S} f(x)$.

The compactness of the sublevel set (being nonempty, closed, and bounded) ensures that the minimum value is attained and a global minimizer exists in S .

Unconstrained optimization

Unconstrained optimization refers to problems of the form

$$\min_{x \in \mathbb{R}^n} f(x),$$

i.e., the decision variables are not constrained; only the objective matters.

We aim to provide a simple means of determining whether a particular point is a local or global solution

Taylor's Theorem

Taylor's theorem explains how a smooth function can be approximated *locally* by a polynomial.

The approximation depends on:

- the function value
- low-order derivatives of f

This local approximation is fundamental in optimization.

First-order Taylor theorem (integral form)

Theorem 3

Let $f : \mathbb{R}^n \rightarrow \mathbb{R}$ be continuously differentiable. For any $x, p \in \mathbb{R}^n$,

$$f(x + p) = f(x) + \int_0^1 \nabla f(x + \gamma p)^\top p \, d\gamma.$$

Interpretation: the change in f is an accumulated directional derivative along the line segment from x to $x + p$.

First-order Taylor theorem (mean-value form)

Under the same assumptions, there exists some $\gamma \in (0, 1)$ such that

$$f(x + p) = f(x) + \nabla f(x + \gamma p)^\top p.$$

Interpretation: locally, f behaves like a linear function evaluated at an intermediate point.

Second-order Taylor expansion: gradient

If f is twice continuously differentiable, then

$$\nabla f(x + p) = \nabla f(x) + \int_0^1 \nabla^2 f(x + \gamma p) p \, d\gamma.$$

The Hessian controls how the gradient changes locally.

Second-order Taylor theorem

If f is twice continuously differentiable, then there exists some $\gamma \in (0, 1)$ such that

$$f(x + p) = f(x) + \nabla f(x)^\top p + \frac{1}{2} p^\top \nabla^2 f(x + \gamma p) p.$$

Interpretation:

- first-order term: linear approximation
- second-order term: curvature correction

Terminology

- $$f(x + p) = f(x) + \int_0^1 \nabla f(x + \gamma p)^\top p \, d\gamma$$

is called the **integral form** of Taylor's theorem.

- $$f(x + p) = f(x) + \nabla f(x + \gamma p)^\top p$$

is called the **mean-value form**.

Why Taylor's theorem matters in optimization

Taylor expansions allow us to:

- approximate complicated objectives locally
- reason about descent directions
- design efficient algorithms

First-order necessary condition

Assume f is continuously differentiable.

Theorem 4 (First-order necessary condition)

If x^ is an unconstrained local minimizer of f , then*

$$\nabla f(x^*) = 0.$$

A point satisfying $\nabla f(x) = 0$ is called a **stationary/critical point**.

This condition is necessary but, in general, not sufficient. (With convexity, it becomes sufficient for global optimality.)

Proof Strategy

We prove by contradiction.

- Assume x^* is a local minimizer
- Suppose $\nabla f(x^*) \neq 0$
- Show there exists a nearby point with strictly smaller function value

Proof: $\nabla f(\mathbf{x}^*) = \mathbf{0}$ is Necessary

To prove by contradiction, assume \mathbf{x}^* is a local minimizer but $\nabla f(\mathbf{x}^*) \neq \mathbf{0}$. Using a steepest descent step $\mathbf{p} = -\alpha \nabla f(\mathbf{x}^*)$ and the mean value form of Taylor's theorem:

$$f(\mathbf{x}^* - \alpha \nabla f(\mathbf{x}^*)) = f(\mathbf{x}^*) - \alpha \nabla f(\mathbf{x}^* - \gamma \alpha \nabla f(\mathbf{x}^*))^\top \nabla f(\mathbf{x}^*)$$

for some $\gamma \in (0, 1)$. By the continuity of the gradient, for sufficiently small $\alpha > 0$:

$$\nabla f(\mathbf{x}^* - \gamma \alpha \nabla f(\mathbf{x}^*))^\top \nabla f(\mathbf{x}^*) \geq \frac{1}{2} \|\nabla f(\mathbf{x}^*)\|^2$$

Substituting this back into the expansion yields:

$$f(\mathbf{x}^* - \alpha \nabla f(\mathbf{x}^*)) \leq f(\mathbf{x}^*) - \frac{1}{2} \alpha \|\nabla f(\mathbf{x}^*)\|^2 < f(\mathbf{x}^*)$$

Second-order necessary condition

Assume f is twice continuously differentiable.

Theorem 5 (Second-order necessary condition)

If x^ is an unconstrained local minimizer of f , then*

$$\nabla f(x^*) = 0 \quad \text{and} \quad \nabla^2 f(x^*) \succeq 0.$$

Interpretation: curvature at a local minimum cannot be “negative” in any direction.

Second-order conditions: linear algebra interlude

For twice differentiable f , the Hessian at x is $\nabla^2 f(x)$ (symmetric).

PSD/PD definitions

A symmetric matrix H is:

- **positive semidefinite (psd)** if $v^\top H v \geq 0$ for all v ,
- **positive definite (pd)** if $v^\top H v > 0$ for all $v \neq 0$.

If A is not symmetric, one often considers its symmetric part $\frac{1}{2}(A + A^\top)$.

Eigenvalue characterizations

Theorem 6

A symmetric matrix H is psd iff all eigenvalues of H are ≥ 0 . It is pd iff all eigenvalues are > 0 .

Proof

Suppose $\nabla^2 f(\mathbf{x}^*)$ is not positive semidefinite. Then there exists a unit vector \mathbf{v} such that $\mathbf{v}^\top \nabla^2 f(\mathbf{x}^*) \mathbf{v} \leq -\lambda$ for some $\lambda > 0$. Consider $\mathbf{x} = \mathbf{x}^* + \alpha \mathbf{v}$. Since $\nabla f(\mathbf{x}^*) = \mathbf{0}$, the second-order Taylor expansion gives:

$$f(\mathbf{x}^* + \alpha \mathbf{v}) = f(\mathbf{x}^*) + \frac{1}{2} \alpha^2 \mathbf{v}^\top \nabla^2 f(\mathbf{x}^* + \gamma \alpha \mathbf{v}) \mathbf{v}$$

for $\gamma \in (0, 1)$. By continuity of the Hessian, for sufficiently small $\alpha > 0$:

$$\mathbf{v}^\top \nabla^2 f(\mathbf{x}^* + \gamma \alpha \mathbf{v}) \mathbf{v} \leq -\frac{\lambda}{2} \implies f(\mathbf{x}^* + \alpha \mathbf{v}) \leq f(\mathbf{x}^*) - \frac{1}{4} \alpha^2 \lambda < f(\mathbf{x}^*)$$

This contradicts the local minimality of \mathbf{x}^* , hence $\nabla^2 f(\mathbf{x}^*) \succeq \mathbf{0}$.

Second-order sufficient condition

Assume f is twice continuously differentiable.

Theorem 7 (Second-order sufficient condition)

If $\nabla f(x^) = 0$ and $\nabla^2 f(x^*) \succ 0$, then x^* is a strict local minimum.*

Remarks (important):

- $\nabla^2 f(x^*) \succeq 0$ is not sufficient for local optimality, e.g., $f(x) = x^3$
- $\nabla^2 f(x^*) \succ 0$ is not necessary for (even strict global) optimality, e.g., $f(x) = x^4$

Proof: Second-Order Sufficient Condition

Since $\nabla^2 f(\mathbf{x}^*) \succ \mathbf{0}$ and the Hessian is continuous, there exist $\rho > 0$ and $\epsilon > 0$ such that for any direction \mathbf{v} :

$$\mathbf{v}^\top \nabla^2 f(\mathbf{x}^* + \gamma \mathbf{p}) \mathbf{v} \geq \epsilon \|\mathbf{v}\|^2$$

for all steps $\|\mathbf{p}\| \leq \rho$ and $\gamma \in (0, 1)$.

Applying Taylor's theorem at \mathbf{x}^* for a step \mathbf{p} with $\|\mathbf{p}\| \leq \rho$:

$$f(\mathbf{x}^* + \mathbf{p}) = f(\mathbf{x}^*) + \nabla f(\mathbf{x}^*)^\top \mathbf{p} + \frac{1}{2} \mathbf{p}^\top \nabla^2 f(\mathbf{x}^* + \gamma \mathbf{p}) \mathbf{p}$$

Given the stationary point condition $\nabla f(\mathbf{x}^*) = \mathbf{0}$, we substitute the curvature bound:

$$f(\mathbf{x}^* + \mathbf{p}) \geq f(\mathbf{x}^*) + \frac{1}{2} \epsilon \|\mathbf{p}\|^2$$

For all $\mathbf{x} \in \mathcal{N} = \{\mathbf{x} : \|\mathbf{x} - \mathbf{x}^*\| < \rho\}$ where $\mathbf{x} \neq \mathbf{x}^*$, it follows that $f(\mathbf{x}) > f(\mathbf{x}^*)$. This confirms \mathbf{x}^* is a **strict local minimizer**.

Least Squares: Gradient and Hessian via Taylor Expansion

Consider the loss function $f(\mathbf{x}) = \frac{1}{2}\|\mathbf{Ax} - \mathbf{b}\|^2$. To find the derivatives, we expand $f(\mathbf{x} + \mathbf{p})$ and identify the linear and quadratic terms in \mathbf{p} :

$$\begin{aligned}f(\mathbf{x} + \mathbf{p}) &= \frac{1}{2}(\mathbf{A}(\mathbf{x} + \mathbf{p}) - \mathbf{b})^\top(\mathbf{A}(\mathbf{x} + \mathbf{p}) - \mathbf{b}) \\&= \frac{1}{2}((\mathbf{Ax} - \mathbf{b}) + \mathbf{Ap})^\top((\mathbf{Ax} - \mathbf{b}) + \mathbf{Ap}) \\&= \frac{1}{2}\|\mathbf{Ax} - \mathbf{b}\|^2 + (\mathbf{Ax} - \mathbf{b})^\top \mathbf{Ap} + \frac{1}{2}\mathbf{p}^\top \mathbf{A}^\top \mathbf{Ap}\end{aligned}$$

Cont'd

By comparing this to the Taylor series

$$f(\mathbf{x} + \mathbf{p}) = f(\mathbf{x}) + \nabla f(\mathbf{x})^\top \mathbf{p} + \frac{1}{2} \mathbf{p}^\top \nabla^2 f(\mathbf{x}) \mathbf{p}:$$

1. Gradient Identification:

The linear term is $(\mathbf{A}\mathbf{x} - \mathbf{b})^\top \mathbf{A}\mathbf{p} = (\mathbf{A}^\top(\mathbf{A}\mathbf{x} - \mathbf{b}))^\top \mathbf{p}$. Thus:

$$\nabla f(\mathbf{x}) = \mathbf{A}^\top(\mathbf{A}\mathbf{x} - \mathbf{b})$$

2. Hessian Identification:

The quadratic term is $\frac{1}{2} \mathbf{p}^\top (\mathbf{A}^\top \mathbf{A}) \mathbf{p}$. Thus:

$$\nabla^2 f(\mathbf{x}) = \mathbf{A}^\top \mathbf{A}$$

Least squares: solution via optimality conditions

First-order optimality gives the **normal equations**:

$$A^\top A x^\star = A^\top b.$$

If A has full column rank, then $A^\top A$ is invertible and

$$x^\star = (A^\top A)^{-1} A^\top b.$$