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An Optimization Problem

We write an optimization problem in the form

min f(z),

e

where
e 1 € R"™ are the decision variables,
e f:R"™ — R is the objective function,
e () C R" is the constraint/feasible set.
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Local and Global Minimizers

Global minimizer:
x* € Q is a global minimizer of f if

f(z) > f(z*) VYa el

Local minimizer:

x* € Q is a local minimizer of f if there exists a neighborhood N of
x* such that
f(x) > f(z*) YzeNNQ.

Optimality Conditions 0-4



Strict Local Minimizer

Strict local minimizer:

x* € Q is a strict local minimizer if there exists a neighborhood N of
x* such that

f(x) > f(x*) Ve e NNQ, x# .
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Unique Minimizer

Unique minimizer:

x* is the unique minimizer if it is the only global minimizer of f.

f(z) > f(z*) Vze, and equality holds only at z = x*.

Remark: Uniqueness is a global property, not a local one.

Optimality Conditions 0-6



Example: Minimization without a Minimizer

Example L1.1. Consider minimization of the following two functions,
both over their domains.
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Example 1: Unbounded Objective

f(@) = tan(z), Q= (-7; g)

e Asz— —27F, f(z) = —o0

e Objective is unbounded below
e Values can be made arbitrarily small

= No minimizer exists.
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Example 2: Lower Bounded but No Minimizer

f@)=-104+¢* Q=R

e f(x) > —10 for all =
e Objective has a lower bound
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Why No Minimizer Exists

S =-10

e For any z, and any 2/ > x:

f@@') < f(z)

e The infimum is approached as x — +o0

e But no finite x achieves it

= No minimizer exists.
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Key Takeaways

e Minimization problems may fail to have solutions
e Two common failure modes:

o Objective is unbounded below
o Objective is bounded, but the infimum is not attained

e Existence of a minimizer requires more than smoothness
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Existence of Minimizers

Theorem 1 (Weierstrass extreme value theorem)

Let f: Q2 — R be continuous and let 2 C R™ be nonempty and
compact (closed and bounded). Then there exists ©* € Q) such that

f@®) < f(x) Vae.

Interpretation: under mild conditions, optimization problems
actually have solutions.
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Weierstrass Theorem (Compact Sublevel Sets)

Theorem 2
Let f be a continuous function defined on a set S. If f has a

nonempty and compact sublevel set C = {x € S : f(x) < o} for
some o € R, then there exists x* € S such that

f(x*) = mingegs f(x).

The compactness of the sublevel set (being nonempty, closed, and
bounded) ensures that the minimum value is attained and a global
minimizer exists in S.
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Unconstrained optimization

Unconstrained optimization refers to problems of the form

min f(x

wmin /().
i.e., the decision variables are not constrained; only the objective
matters.

We aim to provide a simple means of determining whether a
particular point is a local or global solution
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Taylor’s Theorem

Taylor's theorem explains how a smooth function can be
approximated locally by a polynomial.

The approximation depends on:
e the function value

e low-order derivatives of f

This local approximation is fundamental in optimization.
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First-order Taylor theorem (integral form)

Theorem 3
Let f : R™ — R be continuously differentiable. For any x,p € R",

flx+p) = f() +/01 Vf(z+p) pdy.

Interpretation: the change in f is an accumulated directional
derivative along the line segment from = to = + p.
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First-order Taylor theorem (mean-value form)

Under the same assumptions, there exists some v € (0,1) such that

f(z+p) = f(x) + Vf(z+p) p.

Interpretation: locally, f behaves like a linear function evaluated at
an intermediate point.
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Second-order Taylor expansion: gradient

If f is twice continuously differentiable, then
1
Vi@+p) = Vi@ + [ Vi@t pdy

The Hessian controls how the gradient changes locally.
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Second-order Taylor theorem

If f is twice continuously differentiable, then there exists some
v € (0,1) such that

fle+) = @)+ V@) o+ 35TV (@ +70)p

Interpretation:
o first-order term: linear approximation

e second-order term: curvature correction
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Terminology

fz+p) = f(z) +/01 Vf(z+p) pdy

is called the integral form of Taylor's theorem.

fl@+p)=fx)+Vfx+p) p

is called the mean-value form.
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Why Taylor’'s theorem matters in optimization

Taylor expansions allow us to:
e approximate complicated objectives locally
e reason about descent directions

e design efficient algorithms
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First-order necessary condition

Assume f is continuously differentiable.

Theorem 4 (First-order necessary condition)

If x* is an unconstrained local minimizer of f, then

Vi(x*)=0.

A point satisfying Vf(x) = 0 is called a stationary/critical point.

This condition is necessary but, in general, not sufficient. (With
convexity, it becomes sufficient for global optimality.)
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Proof Strategy

We prove by contradiction.
e Assume x* is a local minimizer
e Suppose Vf(z*) # 0

e Show there exists a nearby point with strictly smaller function
value
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Proof: Vf(x*) =0 is Necessary

To prove by contradiction, assume x* is a local minimizer but
Vf(x*) # 0. Using a steepest descent step p = —a'V f(x*) and the
mean value form of Taylor's theorem:

f@* — aV f(z¥) = f(z*) — aV f(x* — yaV f(x*)V f(z*)

for some v € (0,1). By the continuity of the gradient, for sufficiently
small a > 0:

1
Vi(a* —~aV (@) Vf(z") > IV F @)l
Substituting this back into the expansion yields:

fl@* — aV (@) < () - Jal VF@HIP < f()
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Second-order necessary condition

Assume f is twice continuously differentiable.

Theorem 5 (Second-order necessary condition)

If x* is an unconstrained local minimizer of f, then

Vf(x*)=0 and V*f(z*)>=0.

Interpretation: curvature at a local minimum cannot be “negative”

any direction.
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Second-order conditions: linear algebra interlude

For twice differentiable f, the Hessian at x is V2 f(x) (symmetric).

PSD/PD definitions

A symmetric matrix H is:
e positive semidefinite (psd) if v Hv >0 for all v,
e positive definite (pd) if v" Hv > 0 for all v # 0.

If A is not symmetric, one often considers its symmetric part
T(A+AT).
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Eigenvalue characterizations

Theorem 6

A symmetric matrix H is psd iff all eigenvalues of H are > 0. It is pd
iff all eigenvalues are > 0.
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Proof

Suppose V2 f(x*) is not positive semidefinite. Then there exists a
unit vector v such that v V2f(z*)v < —\ for some A > 0. Consider
x = x* 4 av. Since Vf(x*) = 0, the second-order Taylor expansion
gives:
* * 1 2., T2 *
f(@* + av) = f(x*) + 0 Vf(x* + yav)v
for v € (0,1). By continuity of the Hessian, for sufficiently small
a>0:
Tyr2 * A * * 1 2 *
v Vef(x*+yav)v < - = f(@*+av) < f(x )—Za A< f(x)

This contradicts the local minimality of 2*, hence V2 f(x*) > 0.
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Second-order sufficient condition

Assume f is twice continuously differentiable.

Theorem 7 (Second-order sufficient condition)

IfVf(z*) =0 and V2 f(z*) = 0, then x* is a strict local minimum.

Remarks (important):

e V2f(2*) = 0is not sufficient for local optimality, e.g., f(z) = 23

e V2f(2*) = 0 is not necessary for (even strict global) optimality,

eg., f(x) =2
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Proof: Second-Order Sufficient Condition

Since V2f(x*) = 0 and the Hessian is continuous, there exist p > 0
and e > 0 such that for any direction v:

v V2 f(a" +p)v > €|v?
for all steps ||p|| < p and 7y € (0,1).

Applying Taylor's theorem at * for a step p with ||p| < p:

S +) = [(@)+ V(@) p+ 50 V2@ +p)p

Given the stationary point condition V f(x*) = 0, we substitute the
curvature bound:

f@* +p) > [@) + elpl?

Forallz e N = {x: || — x*|| < p} where x # x*, it follows that
f(x) > f(x*). This confirms a* is a strict local minimizer.
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Least Squares: Gradient and Hessian via Taylor
Expansion

Consider the loss function f(x) = 3| Az — b||?. To find the
derivatives, we expand f(x + p) and identify the linear and quadratic
terms in p:
f(®+p) = 5(A(z +p) —b)" (A(z +p) - b)

= %((Aac —b)+ Ap) " ((Ax — b) + Ap)

=3/l Az - b|* + (Az —b)TAp+ 3pT AT Ap
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Cont’d

By comparing this to the Taylor series

flx+p) = f(x)+Vf(@)p+sp V2f(z)p:

1. Gradient ldentification:

The linear term is (Az —b)' Ap = (AT (Axz — b)) "p. Thus:

Vf(x)=A"(Ax —b)

2. Hessian ldentification:
The quadratic term is 3p (AT A)p. Thus:

Vif(x)=A"TA
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Least squares: solution via optimality conditions

First-order optimality gives the normal equations:
AT Az* = ATb.
If A has full column rank, then AT A is invertible and

2= (ATA) 1A,
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