
STAT 37710: Machine Learning Autumn 2022

Homework 1

Due date: 11:59pm on Wednesday Oct. 12th

1. Bias-variance decomposition (15 points)

Prove the claim in class:

EDEX,Y [(Y − ĥD(X))2] = EX [(ED[ĥD(X)]− h⋆(X))2]

+ EXED[(ĥD(X)− ED′ [ĥ′
D(X)])2]

+ EX,Y [(Y − h⋆(X))2].

2. MLE (15 points) Let x be a sample from some distribution with parameter θ. Let L(θ|x) be the

likelihood function for θ ∈ Θ. Let g : Θ → R be a function and L̃(ξ|x) := supθ:g(θ)=ξ L(θ|x) be the induced

likelihood function. Suppose θ̂ is the MLE of θ, prove that g(θ̂) is the MLE for g(θ).

3. Maximum likelihood estimation (30 points)

Suppose we have n i.i.d. samples X1, · · · , Xn from the following distributions. Find the MLE of the
required parameters.

a.(5 points) Unif(0, θ). Find MLE for θ.

b.(5 points) N(µ, σ2) with both parameters unknown. Find MLE for σ2.

c.(10 points) N(0,Σ). Find the MLE for Σ.

d.(10 points) N(0,Σ). Find the MLE for Θ = Σ−1. Please also provide conditions that such the MLE
exists.

4. Convex optimization (10 points)

Suppose that f : Rd 7→ R is a convex and differentiable function. Show that x is a minimizer of f if and
only if ∇f(x) = 0.

5. Programming assignment: Empirical risk minimization (30 points) Given a sample data set

D and loss function ℓ(y, ŷ), the empirical risk (or empirical loss) of a hypothesis h is defined as the sample
mean of the loss on D = {(x1, y1), . . . , (xn, yn)}:

R̂D(h) =
1

n

n∑
i=1

ℓ(yi, h(xi))
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where h(xi) is the predicted label for xi. In empirical risk minimization, we use the empirical risk R̂D(h) as
an estimator of the minimal true risk, a.k.a. the Bayes risk, defined as

R∗ := min
h

EX,Y ℓ(Y, h(X)).

Given hypothesis class H (e.g. a collection of predictors), denote the empirical risk estimator as

ĥD := argminh∈HR̂D(h).

The expected error of the empirical risk estimator ĥD is

EDR̂D(ĥD)−R∗ = EDR̂D(ĥD)−min
h∈H

R(h)︸ ︷︷ ︸
estimation error

+ min
h∈H

R(h)−R∗︸ ︷︷ ︸
approximation error

Hereby, the estimation error is due to error caused by n training samples instead of full knowledge of the
joint distribution of X,Y , and the approximation error is due to restricting our attention to model class H.

In this question, we will investigate the trade-off between estimation error and approximation error given
different collections of predictors.

Use the following code to generate a dataset:

#python
import numpy as np
import matp lo t l i b . pyplot as p l t
from s k l e a rn . met r i c s import mean squared error

def data gene ra to r ( n samples ) :
x = np . random . uniform (−10 , 10 , n samples )
y = np . cos ( 0 . 5 + np . exp(−x ) ) + 1/(1 + np . exp(−x ) )
no i s e = np . random . normal (0 , 0 . 01 , n samples )
y += no i s e
return x , y

complete X , complete Y = data gene ra to r (5000)
train X , t ra in Y = complete X [ : 1 0 0 ] , complete Y [ : 1 0 0 ]
large X , large Y = complete X [ 1 0 0 : ] , complete Y [ 1 0 0 : ]

l o s s f u n c = mean squared error

Use train X and train Y as training samples for ERM. large X and large Y are for the approximation
of true data distribution of X and Y , in order to estimate true risk. A plot of a small portion of the dataset.

Use mean squared error as loss function in this problem (where ℓ(yi, h(xi)) = (yi−h(xi))
2 ), unless noted

otherwise.

a.(10 points) Let’s first define Hk to be a collection of all possible polynomial functions of degree k.

Implement the ERM process to select the predictor ĥ ∈ Hk with the lowest empirical risk. (Hint: polyfit
function in numpy could be useful.)

b.(10 points) Experiment with the ERM you built with k of Hk ranging from 0 to 30. Report empirical
loss and plot a graph of empirical risk v.s. k.

c.(10 points) We will further explore the approximation vs. estimation trade-off. First, use the noise-
free distribution in data generator to estimate R∗ with the complete dataset. i.e., the complete dataset
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has noisy (x, y) pairs and we know that without noise

y∗ := E[Y | X = x] = cos(0.5 + e−x) +
1

1 + e−x
. (1)

(Note that in real applications, you normally do not have access to the true distribution of X and Y .) Now
use large X, large Y to estimate the Bayes risk R∗, the risk of the ERM for each k, the estimation error,
and the approximation error. Plot graphs of these errors v.s. k. Experiment with k range from 0 to 25.
(Note: these different errors might not be in the same scale. You can plot one graph for each error v.s. k)
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