
STAT 37710: Machine Learning Autumn 2022

Homework 2

Due date: 11:59pm on Monday Oct. 24th

1. MAP (20 points)

Assume that for each 1 ≤ i ≤ n, one has yi = w>xi + εi with εi ∼ N (0, σ2).

a.(10 points) Assume a prior w ∼ N (0, r2Id), where Id is the identity matrix in d×d dimension. Show
that the MAP estimator in this case is equivalent to the ridge regression estimator. Please be precise about
the choice of the regularization parameter λ.

b.(10 points) Assume a prior p(w) = (τ/2)d exp(−τ‖w‖1), where τ is a parameter for this prior. Show
that the MAP estimator in this case is equivalent to the Lasso estimator. Please be precise about the choice
of the regularization parameter λ.

2. Regression function and Bayes classifier (20 points)

Consider a binary classification problem with Y = {0, 1}. Let g?(x) be the Bayes optimal classifier, and
m?(x) be the optimal regression function. Let m̂ be a fixed function from X to R. Define the plug-in decision
ĝ by

ĝ(x) =

{
1, if m̂(x) ≥ 1/2,

0, if m̂(x) < 1/2.

Prove the following statements.

0 ≤ P(ĝ(X) 6= Y )− P(g?(X) 6= Y )

≤ 2EX [|m̂(X)−m?(X)|] ≤ 2(EX [|m̂(X)−m?(X)|2])1/2.

3. Multi-class logistic regression (20 points) The posterior probabilities for mulitclass logistic regression

can be given as a softmax transformation of hyperplanes, such that:

P (Y = k | X = x) =
exp(a>

k x)∑
j exp(a>

j x)

If we consider the use of maximum likelihood to determine the parameters ak, we can take the nega-
tive logarithm of the likelihood function to obtain the cross-entropy error function for multiclass logistic
regression:

E(a1, . . . ,aK) = − ln

(
N∏

n=1

K∏
k=1

P (Y = k | X = xn)tnk

)
= −

N∑
n=1

K∑
k=1

tnk ln ynk

where tnk = 1{labelOf(xn) = k}, and ynk = P (Y = k | X = xn).
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a.(10 points) For j ∈ {1, . . . ,K}, prove that

∂tnk ln ynk
∂aj

= tnk(1{k = j} − ynj)xn

b.(10 points) Based on the result in (a), show that the gradient of the error function can be stated as
given below

∇ak
E(a1, . . . ,aK) =

N∑
n=1

[ynk − tnk] xn

4. Programming assignment: Lasso (40 points)

In this question, you are required to fit data with a Lasso regression. Recall that the Lasso objective is
to minimize RSS(β) + λ

∑
i βi. Following the script below here, you will be able to generate the training

and testing data.

#python

import numpy as np

np.random.seed (0)

N_fold = 10

N_test = 500

N_train = 1000

N = N_test + N_train

# Specify feature dimensions of X and Y

X_dim = 20

Y_dim = 10

X = np.random.randn(N,X_dim)

# Only have 10 non -zero entries in beta ,

nnz = 10

beta = np.zeros(( X_dim * Y_dim))

nnz_idx = np.random.choice(X_dim * Y_dim , nnz , replace = False)

beta[nnz_idx] = np.random.randn(nnz) * 2

beta = beta.reshape(X_dim , Y_dim)

Y = X @ beta + np.random.rand(N, Y_dim)

# Split training and testing set

X_test = X[: N_test]

Y_test = Y[: N_test]

X_train = X[N_test :]

Y_train = Y[N_test :]

a.(20 points) Write a function to fit the Lasso regression on the training data and calculate the MSE
on the training set. Choosing λ from 0 to 0.04 (with a step of 0.001), compute the estimate ŷ for different
values λ, and plot the MSE as a function of λ.

2



b.(20 points) Implement 10-fold cross validation on the training set to select λ. Plot and compare
the MSE on the hold-out set with the true MSE which is computed on the test set. And see how we get to
finding the ”best” λ.
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