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Basic supervised learning pipeline

Training Data Test Data

m llspam”

Model

Predic-
(Class- tion R
ifier,...)
... 'spam” Tz N

Learning
method

i " h a l I l
i the Vcor A emaeis. Nechon P we 14
f pepoel B0 1EIIDLYTe V0N el
¢ 1 FLONE BN ¢ a0 e figaage

at vous sctions mav cause finane

Dear Customer
For the User Agreement, Sectiol e
mdefautel suspend or termunate Yow mer Fot the User Agreement. Section -
believe that vouws actions mav cause finane wdetuur pend o1 termanate vour
bebeve that
. H
®




Example: Recommender systems

* X: User & article / product features
Y: Ranking of articles / products to display
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Regression

* Goal: learn real valued mapping f:R? - R



Important choices in regression

* What types of functions f should we consider?

1£(x) ()

* How should we measure goodness of fit?



Linear regression

1 fi(x)




Quantifying goodness of fit

D={(x1,41),---»(Xn,¥n)} xR gy, eR

1 fi(x)




Least-squares linear regression optimization

* Givendataset D = {(x1,91),..., (Xn,Yn)} x; €R?  y, R

* How do we find the optimal weight vector?

n

W = arg min E (y; — wix;)?
W
i=1



How to solve?

* Example: Scikit Learn

# Create linear regression object
regr = linear model.LinearRegression()

# Train the model using the training set
regr.fit(X train, Y train)

# Make predictions on the testing set
Y pred = regr.predict(X test
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Least-squares regression with polynomials

Training Points

Underfitting

Overfitting

Error

How can we estimate this?
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Regression from a statistical perspective

* Fundamental assumption: Our data set is generated independently
and identically distributed (iid) from some unknown distribution P

(Xiayi) ~ P(X, Y)

* Our goal is to minimize the expected error (true risk) under P

R(h) = / P((z), y)t(y: h(x))dxdy = Ex. [€(y; h(x)



Note on iid assumption

* When is iid assumption invalid?
- Time series data
- Spatially correlated data
- Correlated noise

 Often, can still use machine learning, but one has to be careful in
interpreting results.

* Most important: Choose train/test to assess the desired generalization



Examples of loss function ¢ for regression

 square loss:

f(f(x); 3’) — (y — h(X))Z 4.5:

e absolute loss
'g(f(X), Y) — |y — h(X)l 2.5: "N

e huber loss: b

- quadraticfor |y —h(x)| < 6 o5/

- linearfor |y —h(x)| > 6 o

- robust and differentiable y-h(x)



Least-squares regression

* In least-squares regression, risk is R(h) = E[(y — h(x))?]

* Suppose (unrealistically) we knew P(X,Y)
- Which h minimizes the risk?

- Foragiven x, what is the optimal prediction?



Minimizing the mean squared error (MSE)

* Assuming the datais generated iid according to (x;,v;) ~ P(X,Y)
* The hypothesis h* minimizing R(h) = E,,[(y — h(x))?] is given by
the conditional mean

h*(x) =E[lY | X =x]

* This (in practice unattainable) hypothesis is called the
Bayes’ optimal predictor
for the squared loss (or regression function)






In practice we have finite data

* Empirical risk minimization

* Canwe do it over all possible functions?

h=hp = i _ 2
p = argmin (y — h(x))
(x,y)€ED

* For instance, we choose linear function class

* What’s the performance of this ERM estimator?



Bias-variance tradeoff

* For least-squares estimation the following holds

Expected risk

7\

I,EDEX,Y [(Y - E(X))QT — Ex [EEDiLD(X) = h*(XZ} 2

~"

Bias

~ ~ 2
+ExEp {hD(X) — ]ED/hD/(X)}

N\ J/
N~

Variance

FExy [V — b (X))

J/

TV
Noise

* |deally wish to find estimator that simultaneously minimizes bias
and variance



Noise in estimation

* Even if we know the Bayes’ optimal hypothesis h*, we’d still incur
some error due to noise

Ex y[(Y —h*(X))?]

* This errorisirreducible, i.e., independent of choice of the
hypothesis class



Bias in estimation

* ERM estimator depends on training data D

h = hp = argmi b))
p = argmin (y — h(x))
(x,y)€D

* But training data D is itself random (drawn iid from P)

* We might want to choose H to have small bias

- (i.e., have small squared error on average)

Ex []EDBD(X) _ h*(X)} 2



Variance in estimation

* MLE solution depends on training data D

i — b — are mi  h(x))?
p = argmin (y — h(x))
(x,y)ED

* This estimator is itself random, and has some variance

Ex Varp VLD(X)} - ExEp [BD(X) — ED’ED’(X)} 2






Bias and variance in regression

* We have seen that the least-squares solution can overfit

* Thus, trade (a little bit of) bias for a (potentially dramatic) reduction

In variance:
- Regularization (e.g., ridge regression, Lasso, ...)



Summary: Bias Variance Tradeoff

Prediction error = Bias? + Variance + Noise

Excess risk of best model considered compared to minimal

Bias achievable risk knowing P(X,Y) (i.e., given infinite data)

Variance Riskincurred due to estimating model from limited data

Noise Risk error incurred by optimal model (i.e., irreducible error)

* Trade bias and variance via model selection / regularization



Summary

* Where we are
- The statistical learning framework: data, model class, loss function
- Mean squared error (square loss) and bias-variance decomposition

« What’s next

- Given training data and a (parametric) model class F, how to estimate model
parameter from observations
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