

STAT 37710 / CMSC 35400 / CAAM 37710 Machine Learning

Linear regression and its regularization

Cong Ma

Review: statistical framework for regression

 Fundamental assumption: Our data set is generated independently and identically distributed (iid) from some unknown distribution P

$$(\mathbf{x}_i, y_i) \sim P(\mathbf{X}, Y)$$

Our goal is to minimize the expected error (true risk) under P

$$R(h) = \int P((x), y)\ell(y; h(\mathbf{x}))d\mathbf{x}dy = \mathbb{E}_{\mathbf{x}, y} \left[\ell(y; h(\mathbf{x}))\right]$$

• In particular, we take the loss function to be the squared loss

Empirical risk minimization (model-free)

• Choose a model class $\,\mathcal{H}\,$

$$\hat{h} = \hat{h}_D = \arg\min_{h \in \mathcal{H}} \sum_{(\mathbf{x}, y) \in D} (y - h(\mathbf{x}))^2$$

• When \mathcal{H} is linear, we have

$$\arg\min_{\mathbf{w}} \sum_{i=1}^{n} (y_i - \mathbf{w}^T \mathbf{x}_i)^2$$

A second (model-based) view on linear regression

Based on well-specified parametric statistical model

$$y_i \sim \mathcal{N}(\mathbf{w}^{\top} \mathbf{x}_i, \sigma^2)$$

• Based on a classical principle: maximum likelihood estimation

An interlude: MLE for parameter estimation

- Parameter estimation:
 - We observe $z_i \stackrel{\mathrm{iid}}{\sim} p_{\theta}, \ \theta \in \Theta$, and the goal is to determine the θ that produced $\{z_i\}_{i=1}^n$.
- Likelihood function $p(z \mid \theta)$
- Maximizing the likelihood function is equivalent to maximizing the log-likelihood function

$$\hat{\theta} = \operatorname*{arg\,max}_{\theta \in \Theta} p(z \mid \theta)$$

Example: estimating mean of Bernoulli

- We toss a coin n times
- Observe following outcomes

$$\mathcal{D} = \{y_i\}_{i=1}^n, y_i \in \{-1,1\}$$
 $(y_i = 1 \text{ means head in } i\text{'s trial, -1 means tail})$

• How do you estimate the bias of the coin? $\frac{1}{n} \sum_{i=1}^{n} 1\{y_i = 1\}$

Statistical model for coin tossing

- Each outcome is independently sampled from $Bern(\theta^*)$
- What's the probability of observing the data?

$$P(\mathcal{D} \mid \theta) = \theta^{n_1} (1 - \theta)^{n - n_1}$$

• MLE principle: Find θ that maximizes the likelihood of the data:

$$\hat{\theta}_{mle} = \arg \max_{\theta \in [0,1]} P(\mathcal{D} \mid \theta)$$

Computing MLE for coin tossing

Example: Estimate mean of Gaussian

• Data
$$\mathscr{D} = \{x_i\}_{i=1}^n, x_i \in \mathbb{R}^d$$

• Assume they follow $\mathcal{N}(\mu^{\star}, \mathbf{I})$

How to estimate using MLE?

$$P(\mathcal{D} | \mu) = \prod_{i=1}^{n} \frac{1}{\sqrt{(2\pi)^{d}}} \exp\left(-\frac{1}{2}(x_{i} - \mu)^{\mathsf{T}}(x_{i} - \mu)\right)$$

$$\arg \max_{\mu} \sum_{i=1}^{n} -(x_{i} - \mu)^{T}(x_{i} - \mu)$$

A probabilistic model for regression

• Consider linear regression. Let's make the statistical assumption that the noise is Gaussian:

$$y_i \sim \mathcal{N}(\mathbf{w}^{\top} \mathbf{x}_i, \sigma^2)$$

• Then we can compute the (conditional) likelihood of the data given any candidate model **w** as:

Maximum (conditional) likelihood estimation

$$\theta^* = \arg\max_{\theta} \hat{P}(y_1, \dots, y_n \mid \mathbf{x}_1, \dots, \mathbf{x}_n, \theta)$$

The negative log likelihood is given by

$$L(\mathbf{w}) = -\log P(y_1, \dots, y_n \mid \mathbf{x}_1, \dots, \mathbf{x}_n, \mathbf{w}) = \frac{n}{2} \log(2\pi\sigma^2) + \sum_{i=1}^n \frac{(y_i - \mathbf{w}^\top \mathbf{x}_i)^2}{2\sigma^2}$$

• Thus, under the "conditional linear Gaussian" assumption, maximizing the likelihood is equivalent to least squares estimation:

$$\arg\max_{\mathbf{w}} P(y_1, \dots, y_n \mid \mathbf{x}_1, \dots, \mathbf{x}_n, \mathbf{w}) = \arg\min_{i=1}^{n} \sum_{i=1}^{n} (y_i - \mathbf{w}^{\top} \mathbf{x}_i)^2$$

Maximum likelihood estimation (MLE)

- MLEs are a very important type of estimator:
 - The MLE is often simple and easy to compute
 - MLEs are invariant under reparameterization (HW)
 - MLEs often have asymptotic optimal properties, e.g.,
 - Consistency
 - Asymptotic efficiency (smallest variance among all "well-behaved" estimators for large n)
 - Asymptotic normality --- allows uncertainty quantification
- All these properties are asymptotic (hold as n->∞)
 - For finite *n*, we must avoid overfitting! (see *later lecture*)

Computational aspect of linear regression

How to solve the following problem?

$$\arg\min_{\mathbf{w}} \sum_{i=1}^{n} (y_i - \mathbf{w}^T \mathbf{x}_i)^2$$

A detour on optimization

• A (differentiable) loss function

$$f: \mathbb{R}^d \mapsto \mathbb{R}$$

Our goal is to solve the following optimization problem

$$\underset{x}{\text{minimize}} \quad f(x)$$

Convex functions

• We say a function is convex if the following is true

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$$

for all x, y, and $\lambda \in [0, 1]$

• Examples:

$$f(x) = x^2 \qquad f(x) = \exp(x)$$

First-order optimality

• Claim: If $f:\mathbb{R}^d\mapsto\mathbb{R}$ is a convex and differentiable function, then $\mathcal X$ is the minimizer of f if and only if

$$\nabla f(x) = 0$$

Matrix notation and normal equations

Define $X \in \mathbb{R}^{n \times d}$ to be the design matrix

 $y \in \mathbb{R}^n$ the collection of outcomes

$$f(w) = \|Xw - y\|_2^2$$

$$\hat{\boldsymbol{w}} = (\boldsymbol{X}^{\top} \boldsymbol{X})^{-1} \boldsymbol{X}^{\top} y$$

Iterative methods for solving linear regression

Gradient descent

$$x_{t+1} = x_t - \eta \nabla f(x_t)$$

Stochastic gradient descent

Ridge regression

- Colinearity
- Stability of estimates

$$\hat{\mathbf{w}} = \left(\mathbf{X}^{\top}\mathbf{X} + \lambda \mathbf{I}\right)^{-1}\mathbf{X}^{\top}\mathbf{y}$$

This is equivalent to solving the following opt problem

$$\min_{\mathbf{w}} \frac{1}{n} \sum_{i=1}^{n} (y_i - \mathbf{w}^{\top} \mathbf{x}_i)^2 + \lambda \|\mathbf{w}\|_2^2$$

Benefits of ridge regression

- Strict generalization of linear regression
- When choosing regularization properly, MSE is smaller than linear regression
- The regularization has fundamental connections to the smoothness of the function
- This is a form of inductive bias

Sparse regression (feature selection)

- Goal: learning a sparse linear classifier (i.e., with weight vector w
 containing at most k non-zero entries)
- Want to solve:

$$\hat{w} = \underset{\mathbf{w}}{\operatorname{arg\,min}} \sum_{i=1}^{n} (y_i - \mathbf{w}^{\top} \mathbf{x}_i)^2 + \lambda \|\mathbf{w}\|_0$$

- This is a difficult combinatorial optimization problem

• Key idea: Replace $||\mathbf{w}||_0$ by a more tractable term

The "sparsity trick": convex relaxation

$$\|\mathbf{w}\|_0 \rightarrow \|\mathbf{w}\|_1$$

Sparse regression: The Lasso

• Ridge regression
$$\min_{\mathbf{w}} \lambda ||\mathbf{w}||_2^2 + \sum_{i=1}^n (y_i - \mathbf{w}^T \mathbf{x}_i)^2$$

- Uses $\|\mathbf{w}\|_2^2$ to control the weights
- Slight modification:
 - replace $\|\mathbf{w}\|_2^2$ by $\|\mathbf{w}\|_1$
 - L1-regularized regression (the LASSO) $\min_{\mathbf{w}} \lambda \|\mathbf{w}\|_1 + \sum_{i=1}^{i=1} \left(y_i \mathbf{w}^\top \mathbf{x}_i\right)^2$
- This alternative penalty encourages coefficients to be exactly 0
 - automatic feature selection!

Summary

What we have learned today:

- A new perspective on linear regression: MLE of well-specified linear model
- Computational methods for linear regression
- Regularized / penalized linear regression