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Review: statistical framework for regression

* Fundamental assumption: Our data set is generated independently and
identically distributed (iid) from some unknown distribution P

(Xiayi) ~ P(X, Y)

* Our goal is to minimize the expected error (true risk) under P
R() = [ P((),)6(y: ho0))ixdy = Ex,y 00y h(x)

* In particular, we take the loss function to be the squared loss



Empirical risk minimization (model-free)

* Choose a model class H

h—hp — argm h(x))?
p=argmin » (y—h(x))
(x,y)ED

* When H islinear, we have

n

arg min Z(yz —wix;)?

W
1=1



A second (model-based) view on linear regression

» Based on well-specified parametric statistical model
T 2
v, ~ N(w' x;,0%)

* Based on a classical principle: maximum likelihood estimation



An interlude: MLE for parameter estimation

* Parameter estimation:
- We observe z; i pg, 8 € ©,and the goal is to determine the 0 that
produced {z; }i 1 .

e Likelihood function p(z | 6)

* Maximizing the likelihood function is equivalent to maximizing the
log-likelihood function

§ = argmaxp(z | 6)
0cO



Example: estimating mean of Bernoulli

 We toss a coin n times

* Observe following outcomes

D = {yi ?=1,yl- = {— 1,1} (¥; = 1 means head in i’s trial, -1 means tail)

: : : 1 <
* How do you estimate the bias of the coin? - Z Hy; =1}
1=1



Statistical model for coin tossing

* Each outcome is independently sampled from Bern(6”)

» What’s the probability of observing the data?

P(2|0) =0"(1 —6)"™"™

 MLE principle: Find 6 that maximizes the likelihood of the data

0 . = arg max P(D|6)
6e[0,1]



Computing MLE for coin tossing



Example: Estimate mean of Gaussian

+Data P = {Xi}n X; € R4

=1
* Assume they follow A (p*, 1)

* How to estimate using MLE?

n

P =[]—=
1V Q2r)d

n

arg max Z — (x;, — ,u)T(xi — U)
=1

1 T
exp (—E(x,- —p) (x; — ﬂ))



A probabilistic model for regression

* Consider linear regression. Let’s make the statistical assumption
that the noise is Gaussian:
yi ~ N(w' x;,0%)
* Then we can compute the (conditional) likelihood of the data given
any candidate model w as:



Maximum (conditional) likelihood estimation

0* = argmgaxfj(yl,...,yn | X1,...,Xp, 0)

* The negative log likelihood is given by

n

n
L(W) = = 1og P(y1, .,y | X1, %0, W) = © log(270?) + >
1=1

(yz — WTX@)Z

202

* Thus, under the “conditional linear Gaussian” assumption,
maximizing the likelihood is equivalent to least squares estimation:

argmaxp(yla'“ayn ’ Xl,...,Xn,W) — argminZ(yi — W Xi)2

W W



Maximum likelihood estimation (MLE)

* MLEs are a very important type of estimator:
- The MLE is often simple and easy to compute
- MLEs are invariant under reparameterization (HW)
- MLEs often have asymptotic optimal properties, e.g.,

= Consistency
= Asymptotic efficiency (smallest variance among all “well-behaved” estimators for large n)
= Asymptotic normality --- allows uncertainty quantification

* All these properties are asymptotic (hold as n-> «)
- For finite n, we must avoid overfitting! (see later lecture)



Computational aspect of linear regression

How to solve the following problem?

n

arg min Z(y@ —wix;)?

w
1=1



A detour on optimization

A (differentiable) loss function
f:R— R
* Our goal is to solve the following optimization problem

minimize f(x)
XZ



Convex functions

» We say a function is convex if the following is true

fAz+ (1 =A)y) <Af(z) +(1=A)[f(y)

for all z,y, and A € [0, 1]

* Examples:

f(z) =27 f(x) = exp(x)



First-order optimality

* Claim: If f ; Rd —S [R is aconvex and differentiable function,
then 7 isthe minimizerof f ifandonly if

Vf(x)=0



Matrix notation and normal equations

Define X € R™"*? to be the design matrix

y € R" the collection of outcomes

f(w) = | Xw —yl|3

w=(X'X)"'X"y



Iterative methods for solving linear regression

* Gradient descent

Ter1 = T¢ — NV [(2¢)

* Stochastic gradient descent



Ridge regression

 Colinearity

* Stability of estimates

w=(XTX+M) X'y

* This is equivalent to solving the following opt problem

n

1
min = Y (g —w'x;) + A |wl3

w1
1=1



Benefits of ridge regression

» Strict generalization of linear regression

* When choosing regularization properly, MSE is smaller than linear
regression

* The regularization has fundamental connections to the smoothness
of the function

* Thisis a form of inductive bias



Sparse regression (feature selection)

 Goal: learning a sparse linear classifier (i.e., with weight vector w
containing at most k non-zero entries)

e Want to solve:
W =argmin ¥ (1 —w ' x;)” + A|w]o

- This is a difficult combinatorial optimization problem

* Key idea: Replace ||w||, by @ more tractable term



The “sparsity trick”: convex relaxation




Sparse regression: The Lasso

: , : T
* Ridge regression  min Awllz+ (v —w'x;)?
1=1
- Uses ||w||5 to control the weights
* Slight modification:
- replace [wll3 by [[w]; >
- L1-regularized regression (the LASSO) mm )\HWHl + Z WTXz')
1=1

* This alternative penalty encourages coefficients to be exactly 0
- automatic feature selection!



Summary

* What we have learned today:
- A new perspective on linear regression: MLE of well-specified linear model
- Computational methods for linear regression
- Regularized / penalized linear regression



