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Outline

I Review ridge regression and Lasso

I Bayesian methods and MAP

I Understand regularization from MAP perspective
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The Bayesian Paradigm

Given a parameter θ, we assume observations are generated
according to p(z|θ). In our work so far, we have treated the
parameter θ like a fixed, deterministic, but unknown quantity while
the observation z is the realization of a random process.

We will now consider probabilistic models for θ in addition to our
data.

I This allows us to incorporate prior information we have
about θ (i.e. information about likely values of θ we have
before collecting any data).

I It also allows us to make statements about our confidence in
different estimates of θ.
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Example: Unfair coin

Suppose you toss a single coin 6
times and each time it comes up
“heads.” It might be reasonable
to say that we are 98% sure that
the coin is unfair, biased towards
heads.

Formally, we can think about this in a hypothesis testing framework
using a binomial probabilistic model. Let z := number of “heads”.

hypothesis: P(heads) ≡ θ > 0.5

p(z|θ) =

(
n

z

)
θz(1− θ)n−z

p(θ > 0.5|z) = ?
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Example: (cont.)

The problem with this is that

p(θ ∈ H0|x)

implies that θ is a random, not deterministic, quantity.

So, while “confidence” statements are very reasonable and in fact
a normal part of “everyday thinking,” this idea can not be
supported from the classical perspective.

All of these “deficiencies” can be circumvented by a change in how
we view the parameter θ.
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Example: Image processing

In many imaging problems, we have a good sense of what
“natural” images should look like.

Likely Unlikely

This prior information can be exploited to improve image
denoising, deblurring, reconstruction, and analysis.
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Bayes Rule
If we view θ as the realization of a random variable with density
p(θ), then we can work with the generative (or forward) model

p(θ)︸︷︷︸
prior

→ θ∗ → p(z|θ∗)︸ ︷︷ ︸
likelihood

→ z.

We are interested in the inverse problem

z → p(θ|z)→ θ̂.

Bayes Rule (Bayes, 1763) shows that

p(θ|z) =
p(z|θ) p(θ)

p(z)
=

p(z|θ) p(θ)∫
p(z|θ̃) p(θ̃) dθ̃

Once we can compute this posterior distribution, confidence
measures such as p(θ ∈ H0|z) are perfectly legitimate quantities to
ask for.
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Example: Coin toss

Suppose you toss a single coin 6 times and each time it comes up
“heads.” Mathematically, we can model the problem as follows. Let
θ = P(Heads). The data (the number of heads z in n = 6 tosses) follows
a binomial distribution p(z|θ) =

(
n
z

)
θz(1− θ)n−z. The mathematical

equivalent of the question “is the coin probably biased” is the probability
P(θ > 0.5|z = 6).
Suppose we assume p(θ) = Unif(0, 1) (all values of θ are equally probable
before we begin to flip the coin, and P(θ > 1

2 ) = 1
2 ). Now compute

p(θ|z) =
p(z|θ)p(θ)∫
p(z|θ̃)p(θ̃)dθ̃

=
θ6∫
θ̃6dθ̃

=
θ6

1
7 θ̃

7|10
= 7 θ6 .

Then

P
(
θ >

1

2
| z = 6

)
=

∫ 1

1
2

7θ̃6dθ̃ = θ̃7|11
2

= 1− 2−7 = 0.984 .

(If we chose a different prior we would get a different answer!)
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Bayesian statistical models

Definition: Bayesian statistical model

A Bayesian statistical model is composed of a data generation
model, p(z|θ), and a prior distribution on the parameters, p(θ).

The prior distribution (or “prior” for short) models the uncertainty
in the parameter. More specifically, p(θ) models our knowledge -
or a lack thereof - prior to collecting data.

Notice that

p(θ|z) =
p(z|θ) p(θ)

p(z)
∝ p(z|θ) p(θ)

Hence, p(θ|z) is proportional to the likelihood function multiplied
by the prior.
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Elements of Bayesian Analysis

(a) Joint distribution

p(z, θ) = p(z|θ)p(θ)

(b) Marginal distributions

p(z) =

∫
p(z|θ)p(θ)dθ

p(θ) =

∫
p(z|θ)p(θ)dz (“prior”)

(c) Posterior distribution

p(θ|z) =
p(z, θ)

p(z)
=

p(z|θ)p(θ)∫
p(z|θ̃)p(θ̃)dθ̃
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Maximum A posteriori

Definition

Maximum A Posteriori (MAP) estimator - the value of θ where
p(θ|z) is maximized:

θ̂MAP(z) = arg max
θ̃

p(θ̃|z) = arg max
θ̃

p(z|θ̃)p(θ̃)
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Example: Binomial + Beta

p(z|θ) =

(
n

z

)
θz(1− θ)n−z, 0 ≤ θ ≤ 1

= binomial likelihood

p(θ) =
1

B(α, β)
θα−1(1− θ)β−1, B(α, β) =

Γ(α)Γ(β)

Γ(α+ β)

= Beta prior distribution

where Γ(α) =

∫ ∞
0

zα−1e−zdz is the Gamma function
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Example: (cont.)

I Joint Density

p(z, θ) =

[ (
n
z

)
B(α, β)

]
θα+z−1(1− θ)n−z+β−1

I Marginal Density

p(z) =

[(
n

z

)
1

B(α, β)

]
B(α+ z, β + n− z)

I Posterior Density

p(θ|z) =
θα+z−1(1− θ)β+n−z−1

B(α+ z, β + n− z)︸ ︷︷ ︸
beta density with parameters

α′ = α+ z
β′ = β + n− z
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Linear regression with prior

y | x = w>x+ ε;

w ∼ N (0, r2I)

How to compute MAP for w?

14 / 16



Ridge vs. LASSO

θ̂Ridge = arg min
θ

{
1

2
‖y −Xθ‖22 +

σ2ε
2σ2θ
‖θ‖22

}
θ̂LASSO = arg min

θ

{
1

2
‖y −Xθ‖22 +

σ2ελ

2
‖θ‖1

}
In both cases, we attempt to find a θ which (a) is a good fit to our
data and (b) adheres to prior information captured by either the `2
or `1 norm of θ.

When should we use one vs. the other?

In general, the LASSO estimator favors sparser θ – i.e., θ with
more zero-valued elements. There is no closed-form expression for
the LASSO estimate.
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Overview

The multivariate Gaussian linear model...

I ... with a multivariate Gaussian prior =⇒ ridge regression

I ... with a multivariate Laplace prior =⇒ LASSO (least
absolute shrinkage and selection operator) regression

These models and methods appear in a wide variety of modern
machine learning settings.
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