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QOutline

» Review ridge regression and Lasso
» Bayesian methods and MAP

» Understand regularization from MAP perspective
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The Bayesian Paradigm

Given a parameter , we assume observations are generated
according to p(z|#). In our work so far, we have treated the
parameter 6 like a fixed, deterministic, but unknown quantity while
the observation z is the realization of a random process.

» This allows us to incorporate prior information we have
about 6 (i.e. information about likely values of 6 we have
before collecting any data).

» [t also allows us to make statements about our confidence in
different estimates of 6.
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Suppose you toss a single coin 6
times and each time it comes up
“heads.” It might be reasonable
to say that we are 98% sure that
the coin is unfair, biased towards
heads.

Formally, we can think about this in a hypothesis testing framework
using a binomial probabilistic model. Let z := number of “heads”.

Example: Unfair coin

hypothesis: P(heads) =6 > 0.5

pelo) = (7)o - o
p(6 >05|z) =7
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Example: (cont.)
The problem with this is that

p(0 € Hylx)

implies that @ is a random, not deterministic, quantity.

So, while “confidence” statements are very reasonable and in fact
a normal part of “everyday thinking,” this idea can not be
supported from the classical perspective.

All of these “deficiencies” can be circumvented by a change in how
we view the parameter 6.

v,
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Example: Image processing

In many imaging problems, we have a good sense of what
“natural” images should look like.

Likely Unlikely
This prior information can be exploited to improve image
denoising, deblurring, reconstruction, and analysis.
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Bayes Rule

If we view 6 as the realization of a random variable with density
p(0), then we can work with the generative (or forward) model

p(0) = 0" — p(z|0%) — z.
~~ ~——
prior likelihood
We are interested in the inverse problem
z— p(]z) = 6.
Bayes Rule (Bayes, 1763) shows that

p(=|0) p(8) _  p(2]0) p(9)
p(2) [ p(210) p(6) db

p(0]z) =

Once we can compute this posterior distribution, confidence
measures such as p(6 € Hyl|z) are perfectly legitimate quantities to
ask for.
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Example: Coin toss

Suppose you toss a single coin 6 times and each time it comes up

“heads.” Mathematically, we can model the problem as follows. Let

6 = P(Heads). The data (the number of heads z in n = 6 tosses) follows

a binomial distribution p(z|6) = (7)6*(1 — #)" . The mathematical

equivalent of the question “is the coin probably biased” is the probability

P(6 > 0.5z = 6).

Suppose we assume p(f) = Unif(0,1) (all values of 6 are equally probable
1

before we begin to flip the coin, and P(6 > 1) = 1). Now compute

pI0)p(6) 0

[pG:l0)p(@)do — [69d0 1073

p(0z) =
Then

)

1
IF’<0>%|2=6) = / 70%d0 = 07)F = 1-277 = 0.984.
1

2

(If we chose a different prior we would get a different answer!)
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Bayesian statistical models

A Bayesian statistical model is composed of a data generation
model, p(z|f), and a prior distribution on the parameters, p(9).

The prior distribution (or “prior” for short) models the uncertainty
in the parameter. More specifically, p(6) models our knowledge -
or a lack thereof - prior to collecting data.

Notice that

p(z|9) p(6)

p(0]z) = s

o< p(210) p(0)

Hence, p(0|z) is proportional to the likelihood function multiplied
by the prior.
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Elements of Bayesian Analysis

(a) Joint distribution

p(z,0) = p(z]0)p(0)

(b) Marginal distributions

p(z) = / p(=16)p(6)d6

p(6) = / p(210)p(0)dz (“prior”)

(c) Posterior distribution

z,0)
plole) =TT = P
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Maximum A posteriori
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Example: Binomial + Beta

p(2]0) = (Z) 0:(1—-6)"*0<0<1

= binomial likelihood

p(0) = B(iﬁ)

= Beta prior distribution

60°~1(1—-6)"", B(a, f) =

I'(a+P)

where I'(«a) = / 2% te™*dz is the Gamma function
0

pE) reflects prior knowledge
that most probahle values
of 8 are close to e fi

I'(a)L(B)
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Example: (cont.)
» Joint Density

p(z, 9) =

] 0a+z71(1 _ e)nfer,Bfl

» Marginal Density

i) = K”) ; ]B(a+z,5+n—z)

» Posterior Density
9a+z—1(1 _ 0),6’+n—z—1

p(9]2) = ¥B(a+z,5+n—z)i

beta density with parameters
o =a+z
B =8+n—=z
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Linear regression with prior

yle=w'z+e¢;
w ~ N(0,7°T)

How to compute MAP for w?
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Ridge vs. LASSO

e = axgmgn {11 - Xe||2+2 2||e||%}

|

In both cases, we attempt to find a 6 which (a) is a good fit to our
data and (b) adheres to prior information captured by either the /o

or ¢1 norm of 6.

fLasso = arg mgiﬂ { 5

When should we use one vs. the other?
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Overview

The multivariate Gaussian linear model...

» ... with a multivariate Gaussian prior = ridge regression

» ... with a multivariate Laplace prior = LASSO (least
absolute shrinkage and selection operator) regression
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