

STAT 37710 / CMSC 35400 / CAAM 37710 Machine Learning

Model Selection: cross validation

Cong Ma

What we have talked about so far

- General stat framework for regression (a form of supervised learning)
- Model-free perspective of linear regression (LR): ERM with linear function class
- Model-based perspective of LR:MLE under conditional Gaussian model
- Computational algorithms for solving LR
- Regularized LR (Ridge and Lasso) and their Bayesian interpretation

But...

- How do we pick the feature mapping $\phi(x)$ in $y \approx w^{\top} \phi(x)$
 - E.g., how to choose the degree of polynomials?
- How to choose the regularization parameter in either ridge regression or Lasso?
- All of these require us to do model selection

Recall our ultimate goal

 Fundamental assumption: Our data set is generated independently and identically distributed (iid) from some unknown distribution P

$$(\mathbf{x}_i, y_i) \sim P(\mathbf{X}, Y)$$

• Our goal is to minimize the *expected error* (true risk) under P

$$R(h) = \int P((x), y)\ell(y; h(\mathbf{x})) d\mathbf{x} dy = \mathbb{E}_{\mathbf{x}, y} \left[\ell(y; h(\mathbf{x})) \right]$$

In an ideal world

• Given different hypotheses, we would just calculate

$$R(h) = \int P((x), y)\ell(y; h(\mathbf{x}))d\mathbf{x}dy = \mathbb{E}_{\mathbf{x}, y} \left[\ell(y; h(\mathbf{x}))\right]$$

and find the one with smallest error

• But this is far from reality: we cannot compute expected error

Fortunately, we have data---using empirical risk

- Assume our data set is generated iid from some unknown P
- Our goal is to minimize the expected error (true risk) under P

$$R(\mathbf{w}) = \int P(\mathbf{x}, y)(y - \mathbf{w}^T \mathbf{x})^2 d\mathbf{x} dy$$
$$= \mathbb{E}_{\mathbf{x}, y}[(y - \mathbf{w}^T \mathbf{x})^2]$$

Estimate the true risk by the empirical risk on a sample data set D

$$\hat{R}_D(\mathbf{w}) = \frac{1}{|D|} \sum_{(\mathbf{x}, y) \in D} (y - \mathbf{w}^T \mathbf{x})^2$$

A big issue

 If we use empirical risk to evaluate, we are essentially arguing for ERM

Empirical Risk Minimization:
$$\hat{\mathbf{w}}_D = \operatorname*{argmin}_{\mathbf{w}} \hat{R}_D(\mathbf{w})$$

• Ideally, we wish to solve $\mathbf{w}^* = \operatorname*{argmin}_{\mathbf{w}} R(\mathbf{w})$

• But empirical risk is too optimistic

Experimental evidence

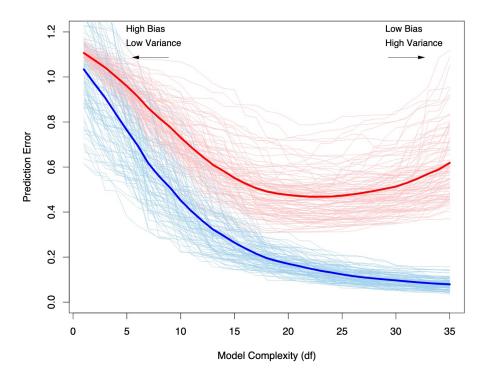


FIGURE 7.1. Behavior of test sample and training sample error as the model complexity is varied. The light blue curves show the training error $\overline{\text{err}}$, while the light red curves show the conditional test error $\text{Err}_{\mathcal{T}}$ for 100 training sets of size 50 each, as the model complexity is increased. The solid curves show the expected test error Err and the expected training error $\text{E}[\overline{\text{err}}]$.

Prediction error and model error

- training set: $\boldsymbol{y}, \boldsymbol{X}$
- $\hat{\beta}$: an estimate based on training set
- ullet new data: $ilde{m{y}} = ilde{m{X}}m{eta} + ilde{m{\eta}} \in \mathbb{R}^m$, where $ilde{m{\eta}} \sim \mathcal{N}(m{0}, m{I}_m)$
- ullet Goal: use $\hat{oldsymbol{eta}}$ to predict $ilde{oldsymbol{y}}$

One may assess the quality of the estimate based on its *prediction* error on \tilde{y} , i.e.

$$\begin{split} \mathsf{PE} &:= \mathbb{E} \left[\left\| \tilde{\boldsymbol{X}} \hat{\boldsymbol{\beta}} - \tilde{\boldsymbol{y}} \right\|^2 \right] \\ &= \mathbb{E} \left[\left\| \tilde{\boldsymbol{X}} (\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}) \right\|^2 \right] + 2 \mathbb{E} \left[(\tilde{\boldsymbol{X}} (\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}))^\top (\tilde{\boldsymbol{y}} - \tilde{\boldsymbol{X}} \boldsymbol{\beta}) \right] + \mathbb{E} \left[\left\| \tilde{\boldsymbol{y}} - \tilde{\boldsymbol{X}} \boldsymbol{\beta} \right\|^2 \right] \\ &= \mathbb{E} \left[\left\| \tilde{\boldsymbol{X}} (\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}) \right\|^2 \right] + \underbrace{m \sigma^2}_{\text{variability of data}} \\ &:= \mathsf{ME} \left(\mathsf{model error} \right) \end{split}$$

Empirical risk

We shall set $\tilde{X} = X$ (and hence m = n) out of simplicity

• the case where the structures of new and old data are the same

Unfortunately, we do not have access to PE (as we don't know β)

- \implies need an operational criterion for estimating PE
- One candidate: estimate PE via residual sum of squares

$$\mathsf{RSS} := \left\| oldsymbol{y} - oldsymbol{X} \hat{oldsymbol{eta}}
ight\|_2^2$$

⇒ training error

Training error underestimates prediction error

Suppose $X\hat{\boldsymbol{\beta}}=\boldsymbol{\Pi}\boldsymbol{y}$ for some given $\boldsymbol{\Pi}$ with $\mathrm{Tr}(\boldsymbol{\Pi})>0$ (e.g. LS), then

$$PE = \mathbb{E}[RSS] + 2\sigma^2 Tr(\mathbf{\Pi}) > \mathbb{E}[RSS]$$
 (8.1)

Proof:

$$\begin{split} \mathsf{PE} - \mathbb{E}[\mathsf{RSS}] &= \mathbb{E}\left[\|\tilde{\boldsymbol{y}} - \boldsymbol{X}\hat{\boldsymbol{\beta}}\|^2\right] - \mathbb{E}\left[\|\boldsymbol{y} - \boldsymbol{X}\hat{\boldsymbol{\beta}}\|^2\right] \\ &= \mathbb{E}\left[\|\tilde{\boldsymbol{y}}\|^2 + \|\boldsymbol{X}\hat{\boldsymbol{\beta}}\|^2 - 2\langle\tilde{\boldsymbol{y}}, \boldsymbol{X}\hat{\boldsymbol{\beta}}\rangle\right] \\ &- \mathbb{E}\left[\|\boldsymbol{y}\|^2 + \|\boldsymbol{X}\hat{\boldsymbol{\beta}}\|^2 - 2\left\langle\boldsymbol{y}, \boldsymbol{X}\hat{\boldsymbol{\beta}}\right\rangle\right] \\ &= 2\mathbb{E}\left[\langle\boldsymbol{y} - \tilde{\boldsymbol{y}}, \boldsymbol{X}\hat{\boldsymbol{\beta}}\rangle\right] = 2\mathbb{E}\left[\langle\boldsymbol{\eta} - \tilde{\boldsymbol{\eta}}, \boldsymbol{\Pi}\boldsymbol{y}\rangle\right] \\ &= 2\mathbb{E}\left[\langle\boldsymbol{\eta}, \boldsymbol{\Pi}\boldsymbol{\eta}\rangle\right] \stackrel{(\mathsf{a})}{=} 2\mathrm{Tr}\left(\boldsymbol{\Pi}\mathbb{E}\left[\boldsymbol{\eta}\boldsymbol{\eta}^\top\right]\right) \\ &= 2\sigma^2\mathrm{Tr}(\boldsymbol{\Pi}), \end{split}$$

where (a) follows from the identity $\text{Tr}(\boldsymbol{A}^{\top}\boldsymbol{B}) = \text{Tr}(\boldsymbol{B}\boldsymbol{A}^{\top})$.

More realistic evaluation: using separate test data

- Want to avoid underestimating the prediction error
- Idea: Use separate test set from the same distribution P
- Obtain training and test data D_{train} and D_{test}
- Optimize \mathbf{w} on training set $\hat{\mathbf{w}}_{D_{\mathrm{train}}} = \arg\min_{\mathbf{w}} \hat{R}_{\mathrm{train}}(\mathbf{w})$
- Evaluate on test set $\hat{R}_{\text{test}}(\hat{\mathbf{w}}) = \frac{1}{|D_{\text{test}}|} \sum_{(\mathbf{x}, y) \in D_{\text{test}}} \left(y \hat{\mathbf{w}}^{\top} \mathbf{x} \right)^2$
- Then $\mathbb{E}_{D_{\mathrm{train}},D_{\mathrm{test}}}\left[\hat{R}_{\mathrm{test}}(\hat{\mathbf{w}}_{D_{\mathrm{train}}})\right] = \mathbb{E}_{D_{\mathrm{train}}}\left[R(\hat{\mathbf{w}}_{D_{\mathrm{train}}})\right]$

First attempt: Evaluation for model selection

- Obtain training and test data $D_{\mathrm{train}}, D_{\mathrm{test}}$
- Fit each candidate model (e.g., degree *m* of polynomial)

$$\hat{\mathbf{w}}_m = \underset{\mathbf{w}: \text{degree}(\mathbf{w}) \leq m}{\operatorname{argmin}} \hat{R}_{\text{train}}(\mathbf{w})$$

• Pick one that does best on test set: $\hat{m} = \operatorname*{argmin}_{m} \hat{R}_{\text{test}}(\hat{\mathbf{w}}_{m})$

Do you see a problem?

Overfitting to *test* set

- Test error is itself random! Variance usually increases for more complex models
- Optimizing for *single* test set creates bias

Solution: Pick multiple test sets!

- **Key idea**: Instead of using a single test set, use **multiple test sets** and average to decrease variance!
- Dilemma:

Any data I use for testing I can't use for training

Using multiple independent test sets is expensive and wasteful

Cross validation

- For each candidate model *m* (e.g., polynomial degree) repeat the following procedure for i = 1:k
 - Split the same data set into training and validation set

$$D = D_{\text{train}}^{(i)} \uplus D_{\text{val}}^{(i)}$$

- Train model $\hat{\mathbf{w}}_{i,m} = \operatorname*{arg\,min}_{\mathbf{w}} \hat{R}_{\mathrm{train}}^{(i)}(\mathbf{w})$
- Estimate error $\hat{R}_m^{(i)} = \hat{R}_{\mathrm{val}}^{(i)}(\hat{\mathbf{w}}_i)$
- Select model

$$\hat{m} = \underset{m}{\operatorname{argmin}} \frac{1}{k} \sum_{i=1}^{k} \hat{R}_{m}^{(i)}$$

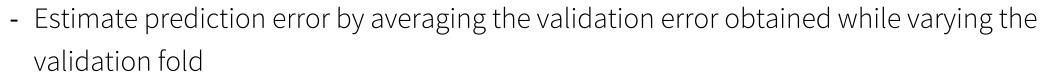
How should we do the splitting?

Randomly (Monte Carlo cross-validation)

- Pick training set of given size uniformly at random Validate on remaining points
- Estimate prediction error by averaging the validation error over multiple random trials

k-fold cross-validation

- Partition the data into *k* "folds"
- Train on (k-1) folds, evaluating on remaining fold



Accuracy of cross-validation

- Cross-validation error estimate is very nearly unbiased for large enough k
- How large should we pick k?
 - Too small
 - Risk of overfitting to test set
 - Using too little data for training
 - risk of underfitting to training set
 - Too large
 - In general, better performance! k=n is perfectly fine (called leave-one-out cross-validation, LOOCV)
 - Higher computational complexity
- In practice, k=5 or k=10 is often used and works well

Best practice for evaluating supervised learning

- Split data set into training and test set
- Never look at test set when fitting the model.

 For example, use *k*-fold cross-validation on training set
- Report final accuracy on test set (but never optimize on test set)!

• Caveat: This only works if the data is i.i.d.

References & acknowledgement

- K. Murphy (2021). "Probabilistic Machine Learning: An Introduction"
 - Ch 4.5.4, 4.5.5, "Regularization"
- Hastie et al. (2021). "The Elements of Statistical Learning"
 - Ch 18.3.4, "Feature Selection"
 - Ch 18.4 "Linear Classifiers with L1 Regularization"
- Virgil Pavlu, "Feature Selection, Sparsity, Regression Regularization"
 - http://www.ccs.neu.edu/home/vip/teach/MLcourse/5_features_dimensions/lecture_notes/features_selection.pdf
- A. Krause, "Introduction to Machine Learning" (ETH Zurich, 2019)