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What we have talked about so far

* General stat framework for regression (a form of supervised
learning)

* Model-free perspective of linear regression (LR): ERM with linear
function class

* Model-based perspective of LR:MLE under conditional Gaussian
model

* Computational algorithms for solving LR

* Regularized LR (Ridge and Lasso) and their Bayesian interpretation



» How do we pick the feature mapping ¢(z) in y~w' ¢(z)
- E.g., how to choose the degree of polynomials?

* How to choose the regularization parameter in either ridge
regression or Lasso?

* All of these require us to do model selection



Recall our ultimate goal

* Fundamental assumption: Our data set is generated independently
and identically distributed (iid) from some unknown distribution P

(xi,4:) ~ P(X,Y)

* Our goal is to minimize the expected error (true risk) under P

R(h) = / P((z), y)t(y: h(x))dxdy = Ex., [€(y; h(x)



In an ideal world

* Given different hypotheses, we would just calculate

R(h) = / P((z), 9)0(y; h(x))dxdy = Ex, [£(y; h(x)

and find the one with smallest error

 But this is far from reality: we cannot compute expected error



Fortunately, we have data---using empirical risk

* Assume our data set is generated iid from some unknown P

* Our goal is to minimize the expected error (true risk) under P

Rw) = [ Px,u)(y — whx)dxdy

= Exy[(y — W' x)7]

 Estimate the true risk by the empirical risk on a sample data set D

A 1
Rp(w) = 1= > (y—wx)’
(x,y)€D



A big issue

* If we use empirical risk to evaluate, we are essentially arguing for
ERM

Empirical Risk Minimization: Wp = argmin Rp(w)
W

* Ideally, we wish to solve w* = argmin R(w)
W

* But empirical risk is too optimistic



Experimental evidence
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FIGURE 7.1. Behavior of test sample and training sample error as the model
complexity is varied. The light blue curves show the training error err, while the
light red curves show the conditional test error Erry for 100 training sets of size
50 each, as the model complexity is increased. The solid curves show the expected
test error Err and the expected training error E[ert].



Prediction error and model error

e training set: y, X

e (3: an estimate based on training set
e new data: § = X3+ 7 € R™, where f7 ~ N(0, I,,,)
e Goal: use B to predict y

One may assess the quality of the estimate based on its prediction
error on y, i.e.

PE :IE[|X,[§—QH2]
—E[|XB- )] +2E[X(B-8)T @~ XP)| +E[|lg - X8|/’
~E[|XB-0)|*|+ o

~~ variability of data
:=ME (model error)



We shall set X = X (and hence m = n) out of simplicity

e the case where the structures of new and old data are the same

Unfortunately, we do not have access to PE (as we don't know 3)

— need an operational criterion for estimating PE

e One candidate: estimate PE via residual sum of squares
112
RSS := [ly — X8|,

—> training error



Training error underestimates prediction error

Suppose X 3 = ITy for some given IT with Tr(IT) > 0 (e.g. LS), then
PE = E[RSS] + 20°Tr(II) > E[RSS] (8.1)
Proof:
PE—E[RSS] = E[|g- XB|*| - E[ly - XB|]
= E[|gl* + 1 X8|* - 2(g, X 3)]
— E [l + | X8 - 2 (y, XB)]
= 2E|(y -9, XB)| =2E[(n— 7, y)]

= 2E[(n,Tn)] 2 2Tr (TIE [1n])

= 20°Tr(I0),

where (a) follows from the identity Tr(A' B) = Tr(BA").
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More realistic evaluation: using separate test data

* Want to avoid underestimating the prediction error
 |dea: Use separate test set from the same distribution P
* Obtain training and test data D,.;, and D

* Optimize w on training set wp,, ;. = argmin Ripain(W)

~ 1
* Evaluate on test set Riest(W) = > (y- vaT;x:)2

° Then EDtrainyDtest éteSt (WDtrain):| — EDtrain [R(WDtrain)]



First attempt: Evaluation for model selection

* Obtain training and test data Dxyain, Dtest
* Fit each candidate model (e.g., degree m of polynomial)
W,, = argmin }A{train(w)

w:degree(w)<m

+ Pick one that does best on test set: 7 = argmin Ryest (W)

m

* Do you see a problem?



Overfitting to test set

* Test erroris itself random! Variance usually increases for more
complex models

* Optimizing for single test set creates bias



Solution: Pick multiple test sets!

» Key idea: Instead of using a single test set, use multiple test sets
and average to decrease variance!

* Dilemma:
Any data | use for testing | can’t use for training

* Using multiple independent test sets is expensive and wasteful



Cross validation

 For each candidate model m (e.g., polynomial degree) repeat the

following procedure fori=1:k
- Split the same data set into training and validation set

D=D%. wDW

train val

- Trainmodel  w; ,, = arg min RY (w)

train
W

- Estimateerror R\ = R(i) (W)

e Select model
= argml

||M?r



How should we do the splitting?

* Randomly (Monte Carlo cross-validation)
- Pick training set of given size uniformly at random Validate on remaining points

- Estimate prediction error by averaging the validation error over multiple random trials

e k-fold cross-validation
- Partition the data into k “folds” D, | D, D | D

- Train on (k-1) folds, evaluating on remaining fold
- Estimate prediction error by averaging the validation error obtained while varying the

validation fold



Accuracy of cross-validation

 Cross-validation error estimate is very nearly unbiased for large enough k

* How large should we pick k?

- Too small
= Risk of overfitting to test set
= Using too little data for training
» risk of underfitting to training set

- Too large

» In general, better performance! k=n is perfectly fine (called leave-one-out cross-validation,
LOOCV)
= Higher computational complexity

* In practice, k=5 or k=10 is often used and works well



Best practice for evaluating supervised learning

* Split data set into training and test set

* Never look at test set when fitting the model.
For example, use k-fold cross-validation on training set

* Report final accuracy on test set
(but never optimize on test set)!

« Caveat: This only works if the data is i.i.d.
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