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Statistical models for classification

* So far, we have focused on regression, e.g., with least-squared loss

Ly h(x)) = (y — h(x))*

* Are there natural statistical models for classification?

E(y;h(x)) _ {1 y # h(x),

0 otherwise

 Can have {0,1},{1,2, ..., K}



Risk in classification

* |n classification, riskis (h) = Ex y|[1{Y # h(X)}]

Exy[1{Y # h(X)}] = ExBy x[1{Y # h(X)} | X
= ExPy x[Y #h(X)| X =

=Ex ZIP’(Y =i | X =z)1{h(z) # i}

=Ex | Y PY=i|X=u)
| ith(z)#1 i
=Ex[1-PY =h(X)| X =2z)].




Bayes classifier

* Suppose (unrealistically) we knew P(X,Y).
- Which h minimizes the risk?

() = arg min By [V #§ | X = x]

y=1
= argminZP(Y =y | X =x)
Y y#y

=argmax P(Y =g | X = x)
Y



Bayes’ optimal classifier

* Assuming the data is generated iid according to
(x5, 9:) ~ P(X,Y)

* The hypothesis h* minimizing R(h) = Ex y[[Y # h(X)]] is given by the
most probable class |

h*(x) =argmax P(Y =y | X = x)
y

 This hypothesis is called the Bayes’ optimal predictor for the
classification loss

* Thus, natural approach is again to estimate P(Y|X)



Natural estimator for P(Y | X)

* Fixsome x in X
* Find out all x_i that are equal to x; suppose we have m such samples

* A natural estimator would be

* What’s the problem of this?



We need a model for P(Y=1 | X =X)

 What about a linear model?

Y=1

Y-AXis

Y-AXis

A 4

X-Axis



Link function for logistic regression

e Link function

o

WTX

) =

1

1 + exp(—w " x)

sigmoid

10



Logistic regression

* Logistic regression (a classification method) replaces the
assumption of Gaussian noise (squared loss) by independently, but
not identically distributed Bernoulli noise:

P(y | x,w) = Bernoulli(y; o(w ' x))



Key observation

 Decision boundary is linear!
- What’s the decision boundary?
- Why isit linear?



MLE for logistic regression

w* € argmax P(D | w) = arg maxHP(yi | x;, W)
W Vo=l

= arg maleog P(y; | x;, w)

w i=1

= arg minz log (1 + exp (_inTXi))
Vo=t

* Negative log likelihood (=objective) function is given by n

R(w) = Z log (1 +exp (—yiw ' x;))

1=1

* The logistic loss is convex! = optimization with (stochastic) gradient descent



Logistic loss (log loss)




Gradient for logistic regression

e Loss for data point (x,%)

U(hw(x),y) = log (1 + exp (—yw ' x))

1

T 14+ exp(—yw ' x
exp (—ywTx)
— T | (—yX)
1 4+ exp (—yw ' x)

1
= B (—yx)

1 +exp(yw'x

T

* Gradient Vo /l(hy(x),y) ) cexp (—yw ' x) - (—yx)




Optimization: logistic regression

* Initialize w

e Fort=1,2,...do
- Pick data point (x, y) uniformly at random from data D
- Compute probability of misclassification with current model

1

P(Y = — —
( Y ‘ va) 1 _I_ exp(yWTX)

- Take gradientstep w < w47, -yx- P(Y = —y | w, x)



Logistic regression and regularization

* Use regularizer to control model complexity
* Instead of solving MLE

mvénz log (1 + exp (_inTXi»
=1

 Estimate MAP/solve regularized problem
- L2 (Gaussian prior)

m“lrnz log (1 + exp (_inTXi)) + AH“’H;
1=1
- L1 (Laplace prior)

m“i’nZlog (1 + exp (_inTxi)) + Aljwl];
i=1



Optimization: regularized logistic regression

* Initialize w

e Fort=1,2,...do
- Pick data point (x, y) uniformly at random from data D
- Compute probability of misclassification with current model

1

P(Y = — —
( Y ‘ va) 1 _I_ exp(yWTX)

- Take gradient step w < w(1l — 2\) + 1, -yx - P(Y = —y | w,x)



Regularized logistic regression

* Learning
- Find optimal weights by minimizing logistic loss + regularizer

W = arg minz log (1 + exp (—yq;WTXz‘)) + AH“’H%

w i=1
= argmaxP(W | X17---7Xn7y17"'7yn)
e Classification

. o . 1
- Use conditional distribution P(Y =y | w,z) =

1 + exp(—yw ' x)

A

- Predict the more likely class label § = argmax P(y | x, W)
Yy



Extension to multi-class logistic regression

* Maintain one weight vector per class and model

PlY =i|x,wy,...,W,.) =

> i—y exp(w

* Not unique - can force uniqueness by setting
- this recovers logistic regression as special case)

* Corresponding loss function (cross-entropy loss)

0(y; X, Wi,...,We) =—log P(Y =y | x,w1,..., W)



Illustration: logistic regression 3-class classifier

Sepal width

Sepal length

Dataset (Iris Data Set) and demo code: https://bit.ly/3bJ98CQ,

19



Summary

Logistic regression is a supervised machine learning classifier that extracts
real-valued features from the input, multiplies each by a weight, sums them,
and passes the sum through a sigmoid function to generate a probability. A
threshold is used to make a decision.

Logistic regression can be used with two classes (e.g., positive and negative
sentiment) or with multiple classes (multinomial logistic regression, for ex-
ample for n-ary text classification, part-of-speech labeling, etc.).

Multinomial logistic regression uses the softmax function to compute proba-
bilities.

The weights (vector w and bias b) are learned from a labeled training set via a
loss function, such as the cross-entropy loss, that must be minimized.

Minimizing this loss function is a convex optimization problem, and iterative
algorithms like gradient descent are used to find the optimal weights.

Regularization is used to avoid overfitting.

Logistic regression is also one of the most useful analytic tools, because of its
ability to transparently study the importance of individual features.
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