

STAT 37710 / CMSC 35400 / CAAM 37710 Machine Learning

Generative Models for Classification

Cong Ma

Discriminative modeling

Discriminative models aim to estimate conditional distribution

$$P(y \mid \mathbf{x})$$

Generative models aim to estimate joint distribution

$$P(y, \mathbf{x})$$

Can derive conditional from joint distribution, but not vice versa.

Typical approaches to generative modeling

- Estimate prior on labels P(y)
- Estimate conditional distribution P(x | y) for each class y
- Obtain predictive distribution using Bayes' rule: P(y | x) = P(y) P(x | y) / Z

Example: hand-written digits

Naïve Bayes classifier (NB)

Model class label as generated from categorical variable

$$P(Y = y) = p_y, y \in \mathcal{Y} = \{1, \dots, c\}$$

Model features as conditionally independent given label

$$P(X_{[1]}, \dots, X_{[d]} \mid Y) = \prod_{i=1}^{d} P(X_{[i]} \mid Y)$$

- given class label, each feature is generated independently of the other features
- need to specify feature distribution $P(X_{[i]} \mid Y)$

Gaussian Naïve Bayes classifier (GNB)

Model class label as generated from categorical variable

$$P(Y = y) = p_y, y \in \mathcal{Y} = \{1, \dots, c\}$$

Model features as conditionally independent Gaussians

$$P(X_{[1]}, \dots, X_{[d]} \mid Y) = \prod_{i=1}^{d} P(X_{[i]} \mid Y)$$

 $P(x_{[i]} \mid y) = \mathcal{N}(x_{[i]} \mid \mu_{y,[i]}, \sigma^2_{y,[i]})$

How do we estimate the parameters?

MLE for P(y)

$$\mathcal{Y} = \{-1, +1\}$$
 $P(Y = +1) = p$ $D = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\}$

• Estimate P(y) using D via MLE:

$$\max_{p} P(D \mid p) = \prod_{i=1}^{n} p^{[y_i=1]} (1-p)^{[y_i=-1]} = p^{n_+} (1-p)^{n_-}$$

where n+ (resp. n−) corresponds to the number of + (resp. -) instances in D.

- The log-likelihood is $\log P(D \mid p) = n_+ \log p + n_- \log (1-p)$
- Taking the gradient and set to 0, we get MLE for label distribution:

MLE for P(x|y)

$$P(x_{[i]} \mid y) = \mathcal{N}(x_{[i]}; \mu_{y,[i]}, \sigma_{y,[i]}^2) \qquad D = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\}$$

• MLE for feature distribution:

Decision rules

• We have estimated P(y) and P(x | y). In order to predict label y for a new data point **x**, use the Bayes' rule

$$P(y \mid \mathbf{x}) = \frac{1}{Z}P(y)P(\mathbf{x} \mid y), \text{ where } Z = \sum_{y} P(y)P(\mathbf{x} \mid y)$$

• To minimize misclassification error, predict:

Gaussian Naive Bayes classifiers

• MLE for class label distribution $\hat{P}(Y=y) = \hat{p}_y = \frac{\mathrm{Count}(Y=y)}{n}$

• MLE for feature distribution: $\hat{P}(x_{[i]} \mid y) = \mathcal{N}(x_{[i]}; \hat{\mu}_{y[i]}, \sigma^2_{y[i]})$

$$\hat{P}(x_{[i]} \mid y) = \mathcal{N}(x_{[i]}; \hat{\mu}_{y[i]}, \sigma_{y[i]}^{2})$$

$$\hat{\mu}_{y[i]} = \frac{1}{\text{Count}(Y = y)} \sum_{j:y_{j} = y} x_{j[i]}$$

$$\hat{\sigma}_{y[i]}^{2} = \frac{1}{\text{Count}(Y = y)} \sum_{j:y_{i} = y} (x_{j[i]} - \hat{\mu}_{y[i]})^{2}$$

Prediction given new point x:

$$y = \underset{y_j}{\arg \max} \hat{P}(y_j \mid \mathbf{x}) = \underset{y_j}{\arg \max} \hat{P}(y_j) \prod_{i=1}^{u} \hat{P}(x_{[i]} \mid y_j)$$

Example: decision boundary (1D)

• Assume $d = 1, \mathbf{x} = x_{[1]}, \mathcal{Y} = \{-1, +1\}$ and P(Y = +1) = 0.5

The decision boundary for a new point x is

$$y = \underset{y_j}{\operatorname{arg max}} P(y_j \mid \mathbf{x}) = \underset{y_j}{\operatorname{arg max}} \hat{P}(y_j) \hat{P}(\mathbf{x} \mid y_j)$$
$$= \underset{y_j}{\operatorname{arg max}} P(\mathbf{x} \mid y_j)$$

Decision rules for binary classification

• We want to predict $y = \underset{y_j}{\operatorname{arg\,max}} \hat{P}(y_j \mid \mathbf{x}) = \underset{y_j}{\operatorname{arg\,max}} \hat{P}(y_j) \prod_{i=1}^{n} \hat{P}(x_{[i]} \mid y_j)$

• For binary tasks (i.e. $c = 2, y \in \{-1, +1\}$), this is equivalent to

$$y = \operatorname{sign}\left(\log \frac{P(Y = +1 \mid \mathbf{x})}{P(Y = -1 \mid \mathbf{x})}\right)$$

Discriminant function

- The function
$$f(\mathbf{x}) = \log \frac{P(Y = +1 \mid \mathbf{x})}{P(Y = -1 \mid \mathbf{x})}$$
 is called **discriminant function**.

Example: GNB (c=2, class-invariant variance)

Assume

- Binary classes: $\mathcal{Y} = \{-1, +1\}$
- Class independent variance: $P(\mathbf{x} \mid y) = \prod_{i} \mathcal{N}(x_{[i]}; \mu_{y,[i]}, \sigma_{[i]}^2)$
- Then $f(\mathbf{x}) = \log \frac{P(Y = +1 \mid \mathbf{x})}{P(Y = -1 \mid \mathbf{x})} = \mathbf{w}^{\top} \mathbf{x} + b$

where
$$w_{[i]} = \frac{\hat{\mu}_{+,[i]} - \hat{\mu}_{-,[i]}}{\hat{\sigma}_{[i]}^2}$$
, $b = \log \frac{\hat{p}_{+}}{1 - \hat{p}_{+}} + \sum_{i=1}^{d} \frac{\mu_{-,[i]}^2 - \mu_{+,[i]}^2}{2\hat{\sigma}_{[i]}^2}$

How?

$$f(\mathbf{x}) = \log \frac{P(Y = +1 \mid \mathbf{x})}{P(Y = -1 \mid \mathbf{x})} = \log \frac{P(Y = +1) \prod_{i=1}^{d} P(x_{[i]} \mid Y = +1) / P(\mathbf{x})}{P(Y = -1) \prod_{i=1}^{d} P(x_{[i]} \mid Y = -1) / P(\mathbf{x})}$$

$$= \log \frac{\hat{p}_{+}}{1 - \hat{p}_{+}} + \log \prod_{i=1}^{d} \frac{P(x_{[i]} \mid Y = +1)}{P(x_{[i]} \mid Y = -1)}$$

$$= \log \frac{\hat{p}_{+}}{1 - \hat{p}_{+}} + \log \prod_{i=1}^{d} \frac{\frac{1}{\sqrt{2\pi}\sigma_{[i]}} \exp\left(-\frac{1}{2\sigma_{[i]}^{2}} \left(x_{[i]} - \mu_{+1,[i]}\right)^{2}\right)}{\frac{1}{\sqrt{2\pi}\sigma_{[i]}} \exp\left(-\frac{1}{2\sigma_{[i]}^{2}} \left(x_{[i]} - \mu_{-1,[i]}\right)^{2}\right)}$$

$$= \log \frac{\hat{p}_{+}}{1 - \hat{p}_{+}} + \sum_{i=1}^{d} \left(-\frac{1}{2\sigma_{[i]}^{2}} \left(x_{[i]} - \mu_{+1,[i]}\right)^{2} + \frac{1}{2\sigma_{[i]}^{2}} \left(x_{[i]} - \mu_{-1,[i]}\right)^{2}\right)$$

$$= \sum_{i=1}^{d} \underbrace{\left(\frac{\hat{\mu}_{+,[i]} - \hat{\mu}_{-,[i]}}{\hat{\sigma}_{[i]}^{2}}\right)}_{w_{[i]}} x_{[i]} + \underbrace{\log \frac{\hat{p}_{+}}{1 - \hat{p}_{+}} + \sum_{i=1}^{d} \frac{\mu_{-,[i]}^{2} - \mu_{+,[i]}^{2}}{2\hat{\sigma}_{[i]}^{2}}}_{b}$$

Gaussian NB (c=2): f vs. class probability

$$f(\mathbf{x}) = \log \frac{P(Y = +1 \mid \mathbf{x})}{P(Y = -1 \mid \mathbf{x})}$$

$$\Leftrightarrow P(Y = +1 \mid \mathbf{x}) = \frac{1}{1 + \exp(-f(\mathbf{x}))} = \sigma(f(\mathbf{x}))$$

• Therefore, for 2-class GNB with class independent variance is

$$P(Y = +1 \mid \mathbf{x}) = \sigma(\mathbf{w}^{\top}\mathbf{x} + b)$$

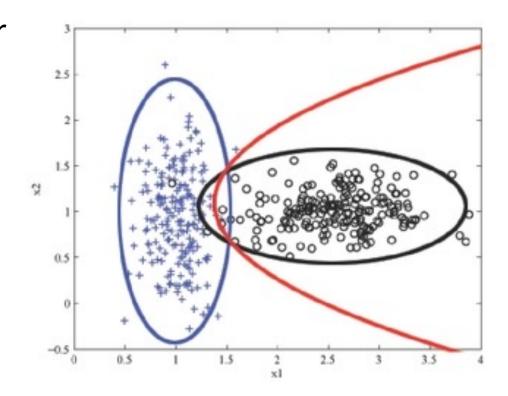
This is of the same form as logistic regression.

• If model assumptions are met, GNB will make same predictions as Logistic Regression!

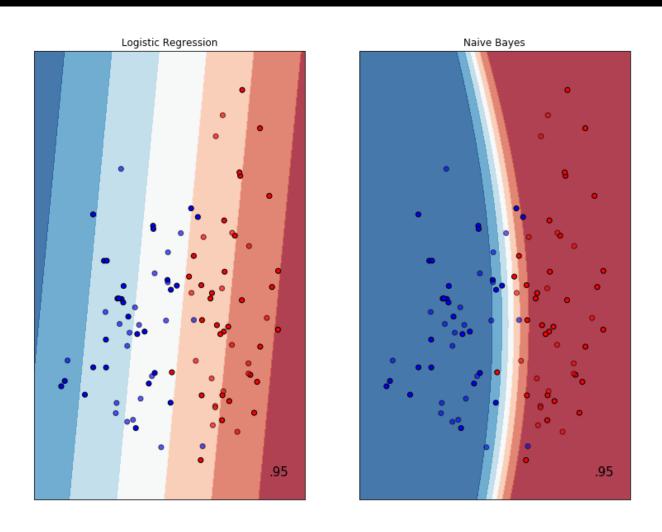
Gaussian NB (c=2): Decision boundary

- Our analysis on the previous slide is for
 - binary classification
 - class independent variance

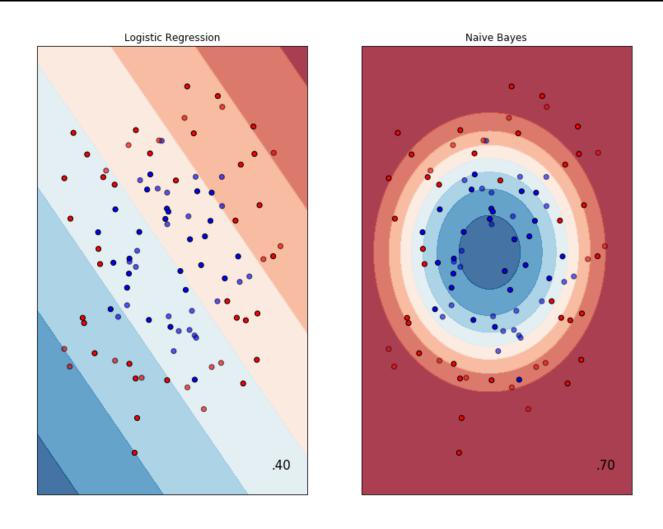
- Nevertheless, one can still apply GNB to datasets violating these assumptions
 - e.g., multi-class, arbitrary variance



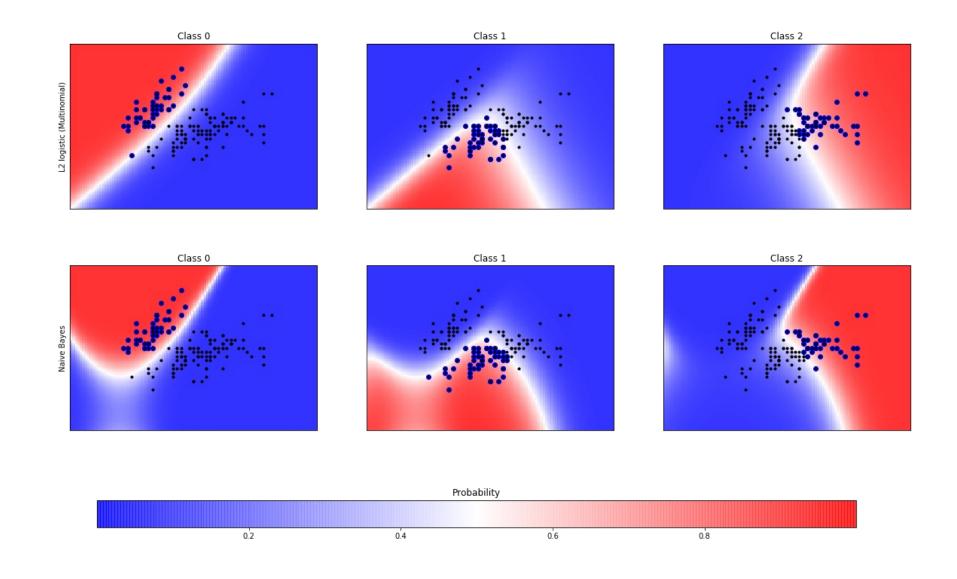
Demo: Gaussian NB vs LR (linear)



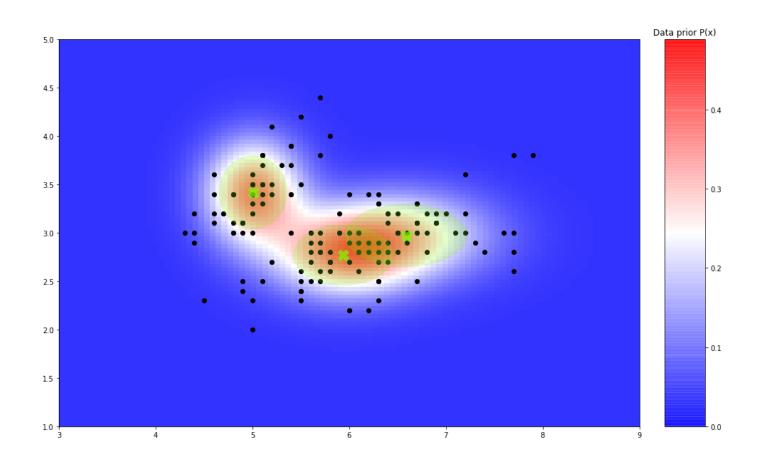
Gaussian NB vs. LR (circle)



Gaussian NB vs LR (multi-class)



Gaussian NB (data likelihood): Anomaly detection



Limitation of Naïve Bayes models

• Assume
$$\mathcal{Y} = \{-1, +1\}$$
 $P(Y = +1) = 0.5$ $x_{[1]} = \cdots = x_{[d]}, \forall \mathbf{x} \in \mathcal{X}$ $P(X_{[i]} = x \mid y) = \mathcal{N}(x \mid \mu_y, 1)$

- We consider the discriminant function for two GNB variants:
 - For GNB that only uses $X_{[1]}: f_1(\mathbf{X}) = \log \frac{P(Y=+1 \mid X_{[1]}=x)}{P(Y=-1 \mid X_{[1]}=x)}$

- For GNB that uses
$$X_{[1]}, \dots, X_{[d]}$$
: $f_2(\mathbf{X}) = \log \frac{P(Y = +1 \mid X_{[1]} = x, \dots, X_{[d]} = x)}{P(Y = -1 \mid X_{[1]} = x, \dots, X_{[d]} = x))}$
$$= \log \frac{P(X_{[1]} = x, \dots, X_{[d]} = x \mid Y = +1)}{P(X_{[1]} = x, \dots, X_{[d]} = x \mid Y = -1))}$$
 Overconfident due to cond. Ind. Assumption!
$$= \log \prod_{i=1}^d \frac{P(X_{[i]} = x \mid Y = +1)}{P(X_{[i]} = x, \mid Y = -1))} = d \cdot f_1(\mathbf{X})$$

Gaussian Bayes classifiers (GBC)

Model class label as generated from categorical variable

$$P(Y = y) = p_y, \ y \in \mathcal{Y} = \{1, \dots, c\}$$

Model features as multivariate Gaussians

$$P(\mathbf{x} \mid y) = \mathcal{N}(\mathbf{x}; \mu_y, \Sigma_y)$$

- Example:
 - Gaussian Naive Bayes (GNB) as special case: $\Sigma_y = \mathrm{diag}\left(\sigma_{y,[1]}^2,\ldots,\sigma_{y,[d]}^2\right)$

How do we estimate the parameters?

MLE for GBC

- Given data $D = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\}$
- MLE for class label distribution

$$\hat{P}(Y=y) = \hat{p}_y = \frac{\text{Count}(Y=y)}{n}$$

MLE for feature distribution:

$$\hat{P}(\mathbf{x} \mid y) = \mathcal{N}(\mathbf{x}; \hat{\mu}_y, \hat{\Sigma}_y^2)$$

$$\hat{\mu}_y = \frac{1}{\text{Count}(Y = y)} \sum_{j: y_j = y} \mathbf{x}_j, \quad \hat{\Sigma}_y = \frac{1}{\text{Count}(Y = y)} \sum_{j: y_j = y} (\mathbf{x}_j - \hat{\mu}_y) (\mathbf{x}_j - \hat{\mu}_y)^{\top}$$

Discriminant functions for GBC

- Given $P(Y=+1)=p_+$; $P(\mathbf{x}\mid y)=\mathcal{N}(\mathbf{x};\mu_y,\Sigma_y)$
- GBC is given by

$$f(\mathbf{x}) = \log \frac{P(Y = +1 \mid \mathbf{x})}{P(Y = -1 \mid \mathbf{x})}$$

$$= \log \frac{p_{+}}{1 - p_{+}} + \frac{1}{2} \log \frac{\left|\hat{\Sigma}_{-}\right|}{\left|\hat{\Sigma}_{+}\right|} + \frac{1}{2} \left[\left((\mathbf{x} - \hat{\mu}_{-})^{\top} \hat{\Sigma}_{-}^{-1} (\mathbf{x} - \hat{\mu}_{-})\right) - \left((\mathbf{x} - \hat{\mu}_{+})^{\top} \hat{\Sigma}_{+}^{-1} (\mathbf{x} - \hat{\mu}_{+})\right)\right]$$

Fisher's linear discriminant analysis (LDA), c = 2

- Suppose we fix $p_+ = 0.5$
- Further, assume covariances are equal: $\Sigma_+ = \Sigma_- = \Sigma$
- Then the discriminant function for GBC could be simplified as

$$f(\mathbf{x}) = \log \frac{p_{+}}{1 - p_{+}} + \frac{1}{2} \left[\log \frac{\left| \hat{\Sigma}_{-} \right|}{\left| \hat{\Sigma}_{+} \right|} + \left((\mathbf{x} - \hat{\mu}_{-})^{\top} \hat{\Sigma}_{-}^{-1} (\mathbf{x} - \hat{\mu}_{-}) \right) - \left((\mathbf{x} - \hat{\mu}_{+})^{\top} \hat{\Sigma}_{+}^{-1} (\mathbf{x} - \hat{\mu}_{+}) \right) \right]$$

$$= \frac{1}{2} \left[\left((\mathbf{x} - \hat{\mu}_{-})^{\top} \hat{\Sigma}^{-1} (\mathbf{x} - \hat{\mu}_{-}) \right) - \left((\mathbf{x} - \hat{\mu}_{+})^{\top} \hat{\Sigma}^{-1} (\mathbf{x} - \hat{\mu}_{+}) \right) \right]$$

$$= \frac{1}{2} \left[\left((\mathbf{x} - \hat{\mu}_{-})^{\top} \hat{\Sigma}^{-1} (\mathbf{x} - \hat{\mu}_{-}) \right) - \left((\mathbf{x} - \hat{\mu}_{+})^{\top} \hat{\Sigma}^{-1} (\mathbf{x} - \hat{\mu}_{+}) \right) \right]$$

Fisher's LDA

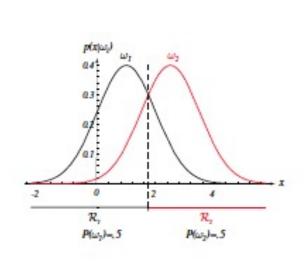
Assuming

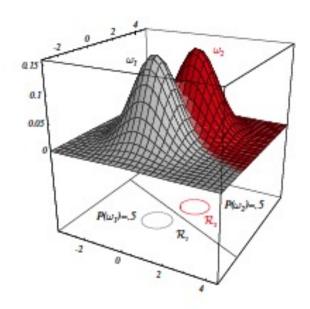
- binary classification $\mathcal{Y} = \{-1, +1\}$
- equal class probabilities $p_+=0.5$
- equal covariances $\Sigma_+ = \Sigma_- = \Sigma$

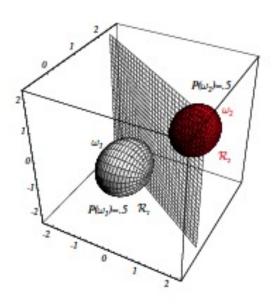
• Fisher's LDA predicts

$$y = \operatorname{sign}(f(\mathbf{x})) = \operatorname{sign}(\mathbf{w}^{\top}\mathbf{x} + b)$$
 where $\mathbf{w} = \hat{\Sigma}^{-1} (\hat{\mu}_{+} - \hat{\mu}_{-})$ and $b = \frac{1}{2} \left(\hat{\mu}_{-}^{\top}\hat{\Sigma}^{-1}\hat{\mu}_{-} - \hat{\mu}_{+}^{\top}\hat{\Sigma}^{-1}\hat{\mu}_{+} \right)$

LDA Illustration







LDA vs logistic regression

Fisher's LDA uses the discriminant function

$$f(\mathbf{x}) = \log \frac{P(Y = +1 \mid \mathbf{x})}{P(Y = -1 \mid \mathbf{x})} := \mathbf{w}^{\top} \mathbf{x} + b$$

$$\Leftrightarrow P(Y = +1 \mid \mathbf{x}) = \frac{1}{1 + \exp(-f(\mathbf{x}))} = \sigma(f(\mathbf{x}))$$

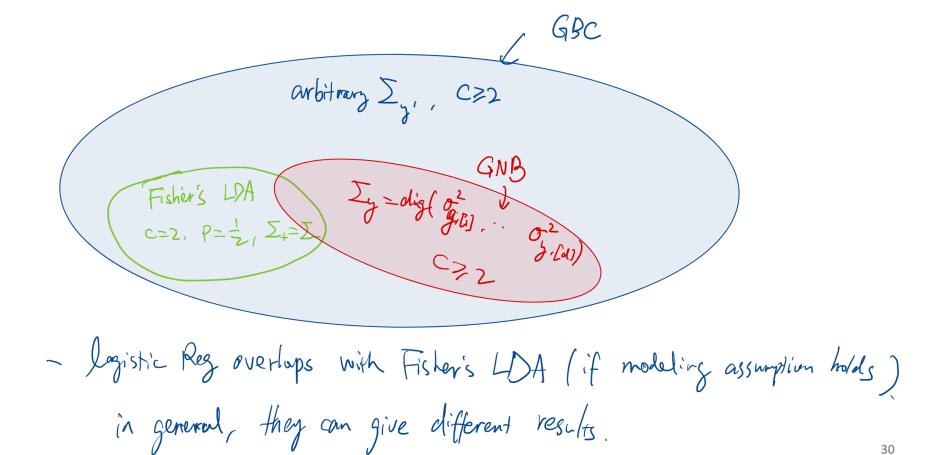
• Therefore, the class probability of LDA is

$$P(Y = +1 \mid \mathbf{x}) = \sigma(\mathbf{w}^{\top}\mathbf{x} + b)$$

This is of the same form as logistic regression.

• If model assumptions are met, LDA will make same predictions as Logistic Regression!

Gaussian Bayes classifiers



Fishers LDA vs logistic regression

• Fisher's LDA

- Generative model, i.e., models P(X,Y)
- Can be used to detect outliers: P(X) < t
- Assumes normality of X
- not very robust against violation of this assumption

Logistic regression

- Discriminative model, i.e., models P(Y | X) only
- Cannot detect outliers
- Makes no assumptions on X
- More robust

GNB vs GBC

Gaussian Naive Bayes models

- Conditional independence assumption may lead to overconfidence
- Predictions might still be useful
- #parameters = O(cd)
- Complexity (memory + inference) linear in d

General Gaussian Bayes models

- Captures correlations among features
- Avoids overconfidence
- #parameters = $O(cd^2)$
- Complexity quadratic in d

Avoid overfitting

- Maximum Likelihood Estimation is prone to overfitting
- We can avoid over fitting by
 - Restricting model class, which often leads to fewer parameters
 - Using priors, which often leads to "smaller" parameters

Prior over parameters (c = 2)

- As prior for our class probabilities, have assumed $P(Y=+1)=\theta$
- MLE: $\hat{\theta} = \frac{\operatorname{Count}(Y=1)}{n}$
 - What happens in the extreme case n = 1?
- May want to put prior distribution $P(\theta)$ and compute posterior distribution $P(\theta \mid y_1, \dots, y_n)$
- Example: Beta prior over parameters

Beta
$$(\theta; \alpha_+, \alpha_-) = \frac{1}{B(\alpha_+, \alpha_-)} \theta^{\alpha_+ - 1} (1 - \theta)^{\alpha_- - 1}$$

Recall: Conjugate distributions

- A pair of prior distributions and likelihood functions is called conjugate if the posterior distribution remains in the same family as the prior.
- Example: Beta priors and Binomial likelihood
 - Prior:

Beta
$$(\theta; \alpha_+, \alpha_-)$$

- Observations: supose we have n-positive and n-negative labels
- Posterior:

$$Beta(\theta; \alpha_+ + n_+, \alpha_- + n_-)$$

- Therefore α_+ and α_- act as pseudo-counts. The MAP estimate is

$$\hat{\theta} = \arg \max_{\theta} P(\theta \mid y_1, \dots, y_n; \alpha_+, \alpha_-) = \frac{\alpha_+ + n_+ - 1}{\alpha_+ + n_+ + \alpha_- + n_- - 2}$$

Summary

- Understand connection between discriminative and generative classification
 - Which paradigm is more powerful?
 - Which is in general more robust?
- Relate different Gaussion Bayes classifiers
 - Naïve Bayes
 - Fisher's LDA
 - General GBCs
- Use (conjugate) priors as regularizers
- Compute distributions over features, and use them for outlier detection

Supervised and unsupervised learning summary

Representation/ features

Linear hypotheses, nonlinear hypotheses through feature transformations

Paradigm

Discriminative vs. generative

Probabilistic / Optimization Model

Likelihood *
Loss function +
squared loss = Gaussian lik., 0/1, logistic loss =
Bernoulli lik., cross-entropy loss = categorical lik.

Prior
Regularization
L₂ norm = Gaussian prior, , L₁ norm =
Laplace prior, L₀ norm, Beta priors (for Binomial lik)

Method

Exact solution, gradient descent, Bayesian model averaging ...

Evaluation metric

Mean squared error, accuracy, log-likelihood on validation set ...

Model selection

Monte Carlo cross validation, k-fold cross validation, Bayesian model selection ...

References & acknowledgement

- K. Murphy (2021). "Probabilistic Machine Learning: An Introduction"
 - 9.3 "Naive Bayes classifiers"
 - 9.2.1-9.2.4 "Gaussian discriminant analysis"
 - 9.4 "Generative vs discriminative classifiers"

• A. Krause, "Introduction to Machine Learning" (ETH Zurich, 2019)