8| THE UNIVERSITY OF

# CHICAGO

STAT 37710 / CMSC 35400 / CAAM 37710
Machine Learning

Generative Models for Classification

Cong Ma



Discriminative modeling

* Discriminative models aim to estimate conditional distribution

Py | x)

* Generative models aim to estimate joint distribution

P(y,x)

* Can derive conditional from joint distribution, but not vice versa.



Typical approaches to generative modeling

 Estimate prior on labels P(y)
» Estimate conditional distribution P(x | y) for each class y

* Obtain predictive distribution using Bayes’ rule: P(y | x) =P(y) P(x |y) / Z
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Example: hand-written digits



Naive Bayes classifier (NB)

* Model class label as generated from categorical variable
P(Y:y) = Py yEy:{l,...,C}

* Model features as conditionally independent given label

d
P(Xy,. - Xig | Y) = ][ P(Xi 1Y)
1=1

- given class label, each feature is generated independently of the other features
- need to specify feature distribution P(X;; | Y)



Gaussian Naive Bayes classifier (GNB)

* Model class label as generated from categorical variable
PY=y)=py, ye¥Y={1,...,c}
* Model features as conditionally independent Gaussians

d
P(Xpy,-- - Xig 1Y) = [ [ P(X 1 Y)
1=1

P(:I:[»,;] | y) = N(w[z‘] | oy, [4]5 05,[73])

 How do we estimate the parameters?



MLE for P(y)

y:{—l,—l—l} P(Y:‘|‘1) — D D:{(Xlayl)a"'7<xnayn)}

 Estimate P(y) using D via MLE:
max P(D | p) = pr"_l (1—plv="Y=prr(1-p)"-

where n+ (resp. n—) corresponds to the number of + (resp. -) instances in D.
e The log-likelihood is log P(D | p) = ny logp + n_log(1 — p)
» Taking the gradient and set to 0, we get MLE for label distribution:



MLE for P(x|y)

P(zp) | y) = N(@pp; iy, o) D={&591),- -+, (Xn, Un)}

 MLE for feature distribution:



Decision rules

* We have estimated P(y) and P(x | y). In order to predict label y for a
new data point x, use the Bayes’ rule

1

Py |x)=—P(y)P(x|y), whereZ = > Py)P(x|y)

* To minimize misclassification error, predict:



Gaussian Naive Bayes classifiers

 MLE for class label distribution P(Y =y) =p, = Count (Y = y)

* MLE for feature distribution:  P(xp | y) = N (@33 iy oopiy)

* Prediction given new point x:

d
y = argmax P(y; | x) = argmax P(y,) HP(ZE[Z-] | y5)
Yj Yj -

~
|
—



Example: decision boundary (1D)

* Assume d=1,x=uxp,Y=1{-1,+1} and P(Y =+1)=0.5

* The decision boundary for a new point x is

y = argmax P(y; | x) = argmaxp(yj)f’(x | Y5)
Yj Yj
= argmax P(x | y;)
Yj



Decision rules for binary classification

» We want to predict y = argmax P(y; | x) = arg max P( yg Pz | yj)

Yj Yj

||::]g

 For binary tasks (i.e.c=2,y € {-1, +1}), this is equivalent to

P(Y = +1]x)
sz—uml

£ (x)

Yy = sign (log

e Discriminant function

P(Y = +1]x)

PY = —1| x) is called discriminant function.

- Thefunction f(x) = log




Example: GNB (c=2, class-invariant variance)

* Assume
- Binary classes: Y = {—1,—|—1}
- Classindependentvariance:  P(x | y) Hj\/’ T[i]5 My, [i] [%])

P(Y = +1]x)
* Then — 1 — T b
f(x) CPy = 1% " X +
) > ~ d 2 2
Hot[i] — H— i B — B
where wp;) = +H(32 <, bzloglerA ™ []262 0
[4] P+ i— [4]






Gaussian NB (c=2): f vs. class probability

. PY =+1|x)
f(x) = log Y = 1| x)
1

o P(Y =4+1|x) =

[ e (—f) V&)

* Therefore, for 2-class GNB with class independent variance is

P(Y =+1|x)=0(w'x+Db)
This is of the same form as logistic regression.

* If model assumptions are met, GNB will make same predictions as Logistic
Regression!



Gaussian NB (c=2): Decision boundary

* Our analysis on the previous slide is for
- binary classification
- classindependent variance

* Nevertheless, one can still apply GNB

to datasets violating these

assumptions T N B

- e.g., multi-class, arbitrary variance



Demo: Gaussian NB vs LR (linear)

Logistic Regression
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Gaussian NB vs. LR (circle)

Logistic Regression Naive Bayes
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Gaussian NB vs LR (multi-class)

Probability
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Gaussian NB (data likelihood): Anomaly detection
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Limitation of Naive Bayes models

e Assume Y={-1+1} P(Y =+1)=05 g =-=2q,VxeX
P(Xpy =z [y) = N(z | py, 1)

 We consider the discriminant function for two GNB variants:

P(Y = +1| X}
P(Y = 1| X

- For GNB that only uses Xy : f1(X) = log %)

z)

PY=+1|Xy=2..,Xaq=2)

P(Y = —1 ’ X[l] = a:,...,X[d] = 33))
P(Xpy=w...,Xg=2|Y =+1)

P(X[l] = x,...,X[d] =T ‘ Y = —1))
Overconfident dug to < P(Xpy = | Y = +1)

cond. Ind. Assumption! = 10%};[1 P(Xy =2,V = —1) d- f1(X)

- For GNB that uses Xpj, ..., X ; f2(X) =log

= log




Gaussian Bayes classifiers (GBC)

* Model class label as generated from categorical variable
P(Y=y)=p, yeV={L....c)

 Model features as multivariate Gaussians
P(x | y) = N(x; py, Ey)

* Example:
- Gaussian Naive Bayes (GNB) as special case: ¥, = diag (057[1], e 05,[d])

* How do we estimate the parameters?



MLE for GBC

e Givendata D = {(x1,v1),--.,(Xn,yn)}

 MLE for class label distribution
- ~ Count(Y = y)

n

=
h<
||
Y
||
3>
<
|

 MLE for feature distribution:

p(X ‘ y) :N(X;ﬂyaii)

1 . 1 ) o
by = L Yy = _ _
Hy Count(Y = y) Z % J Count(Y = y) Z (%5 — fiy) (%5 — fiy)

JYi=y JYi=y




Discriminant functions for GBC

* Given P(Y =+1) =pi 5 P(x|y) = N(x; 1y, Zy)
* GBCis given by

P(Y = +1 | x)
=1
S
1
= log P+ + —log ——+
1—p+ 2 Z-I—




Fisher’s linear discriminant analysis (LDA), c =2

* Suppose we fix py =0.5
* Further, assume covariancesareequal: ¥, =¥_ =%

* Then the discriminant function for GBC could be simplified as
2|
2|

= [T 57 e ) = (e )T 57 e )

D+

f(x) = log 5 e

+ % log + ((X — ) BT (x - ﬁ—)) B ((X ~ ) (e ﬂ+)>



Fisher’'s LDA

* Assuming
- binary classification Y={-1,+1}
- equal class probabilities  p4+ = 0.9
- equal covariances Yy =X_=X

* Fisher's LDA predicts

y = sign(f(x)) = sign(w x +b)

A
A A

where w=X"'(4y —/i_) and b=



LDA lllustration
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LDA vs logistic regression

 Fisher’s LDA uses the discriminant function
PY =+1|x)
PY = —1]x)

1
1+ exp (—f(x))
* Therefore, the class probability of LDA is

P(Y =+1|x)=0(w'x+Db)

f(x) =log =w' x+b

& P(Y =+1|x%) =

= o(f(x))

This is of the same form as logistic regression.

* If model assumptions are met, LDA will make same predictions as Logistic
Regression!



Gaussian Bayes classifiers

~ %‘sh‘c, !Qfé, ﬂ\JQr[is with. ko' LA (‘F W®M‘\“§/ oSl /“’/’{_S)
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Fishers LDA vs logistic regression

* Fisher’s LDA
- Generative model, i.e., models P(X,Y)
- Can be used to detect outliers: P(X) <t
- Assumes normality of X
- notvery robust against violation of this assumption

* Logistic regression
- Discriminative model, i.e., models P(Y | X) only
- Cannot detect outliers
- Makes no assumptions on X
- More robust



GNB vs GBC

* Gaussian Naive Bayes models
- Conditional independence assumption may lead to overconfidence
- Predictions might still be useful
- #parameters = O(cd)
- Complexity (memory + inference) linearin d

* General Gaussian Bayes models
- Captures correlations among features
- Avoids overconfidence
- #parameters = O(cd?)
- Complexity quadraticin d



Avoid overfitting

* Maximum Likelihood Estimation is prone to overfitting

* We can avoid over fitting by

- Restricting model class, which often leads to fewer parameters
- Using priors, which often leads to “smaller” parameters



Prior over parameters (c = 2)

* As prior for our class probabilities, have assumed P(Y = +1) =6

* MLE: Count(Y = 1)

n

0 =

- What happens in the extreme case n =17

« May want to put prior distribution P(6) and compute posterior

distribution PO | y1,...,yn)

* Example: Beta prior over parameters

1
B(O‘—HO‘—)

Beta(@; o, ()4_) — 906+—1(1 . H)Oé_—l



Recall: Conjugate distributions

* A pair of prior distributions and likelihood functions is called conjugate if the
posterior distribution remains in the same family as the prior.

* Example: Beta priors and Binomial likelihood
- Prior: Beta(0; a4y, a_)
- Observations: supose we have n.positive and n-negative labels
- Posterior: Beta(f;ayr +ny,a_ +n_)

- Therefore arand a- act as pseudo-counts. The MAP estimate is
a4 -+ ny — 1
oy +ny +a_ +n_ —2

0 = argmax P(0 | y1,...,yn; 04, 0_) =
0



Summary

Understand connection between discriminative and generative classification
- Which paradigm is more powerful?
- Which isin general more robust?

Relate different Gaussion Bayes classifiers
- Nalve Bayes
- Fisher’s LDA
- General GBCs

Use (conjugate) priors as regularizers

Compute distributions over features, and use them for outlier detection



Supervised and unsupervised learning summary

Representation/
features

Paradigm

Probabilistic /
Optimization
Model

Method

Evaluation metric

Model selection

Linear hypotheses, nonlinear hypotheses through feature transformations

Discriminative vs. generative

Prior
Likelihood Regularization
Loss function + L, norm = Gaussian prior, , Ly norm =
squared loss = Gaussian lik., 0/1, logistic loss = Laplace prior, Ly norm, Beta priors (for
Bernoulli lik., cross-entropy loss = categorical lik. Binomial lik)

Exact solution, gradient descent, Bayesian model averaging ...

Mean squared error, accuracy, log-likelihood on validation set ...

Monte Carlo cross validation, k-fold cross validation, Bayesian model|
selection ...
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