
Support vector machine



Two different approaches to regression/classification 

• Assume something about P(x,y) 
• Find f which maximizes likelihood of training data | 

assumption 
• Often reformulated as minimizing loss 

Versus 

• Pick a loss function 
• Pick a set of hypotheses H 
• Pick f from H which minimizes loss on training data



• Learn: f:X —>Y 
• X – features 
• Y – target classes

• Expected loss of f:  
 
 
 

• Bayes optimal classifier: 

• Model of logistic regression: 

■ Loss function: 

Y 2 {�1, 1}

Our description of logistic regression was the former
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• X – features 
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• Model of logistic regression: 

`(f(x), y) = 1{f(x) 6= y}

EXY [1{f(X) 6= Y }] = EX [EY |X [1{f(x) 6= Y }|X = x]]

f(x) = argmax
y
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■ Loss function: 

P (Y = y|x,w) = 1

1 + exp(�y wTx)

What if the model is wrong? What other ways can we pick linear decision rules?

Y 2 {�1, 1}

Our description of logistic regression was the former



Linear classifiers – Which line is better?
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Pick the one with the largest margin!
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T
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■ Solve efficiently by many methods, 
e.g., 
□ quadratic programming (QP) 

■ Well-studied solution algorithms 
□ Stochastic gradient descent 
□ Coordinate descent (in the dual) 



What are support vectors
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T
i w + b) � 1 8i

If data is linearly separable

Note: the solution of this can be written in terms of very few of the training points. 
These points are known as support vectors.



What if the data is not linearly separable?

If data is not linearly separable, 
some points don’t satisfy margin 
constraint:
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If data is linearly separable

Two options:  
1. Introduce slack to this optimization problem 
2. Lift to higher dimensional space
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SVM as penalization method

• Original quadratic program with linear constraints:
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SVM as penalization method

• Original quadratic program with linear constraints: 

• Using same constrained convex optimization trick as for lasso:
For any ⌫ � 0 there exists a � � 0 such that the solution
the following solution is equivalent:

min
w,b

||w||22

yi(x
T
i w + b) � 1� ⇠i 8i

⇠i � 0,
nX

j=1

⇠j  ⌫

nX

i=1

max{0, 1� yi(b+ xT
i w)}+ �||w||22



SVMs: optimizing what?

SVM objective:

nX

i=1

max{0, 1� yi(b+ xT
i w)}+ �||w||22 =

nX

i=1

`i(w, b)

rb`i(w, b) =

(
�yi if yi(b+ xT

i w) < 1

0 otherwise

rw`i(w, b) =

(
�xiyi +

2�
n w if yi(b+ xT

i w) < 1
2�
n otherwise


