
Neural Networks



Neural Networks

• Origins: Algorithms that try to mimic the brain. 
• Widely used in 80s and early 90s; popularity diminished in late 90s. 
• Recent resurgence from 10s: state-of-the-art techniques for many 

applications:  
• Computer Vision 
• Natural language processing 
• Speech recognition 
• Decision-making / control problems (AlphaGo, Dota, robots) 

• Limited theory: 
• Non-convexity 
• Model are complex but generalization error is small 



Neural Networks

This week: 
1.Definitions of neural networks 

2.Training neural networks: 
1.Algorithm: back propagation 
2.Putting it to work 

3.Neural network architecture design: 
1.Convolutional neural network 



Neural Networks
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Multi-layer Neural Network - Binary Classification
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a(2) = �(⇥(1)a(1))

a(l+1) = �(⇥(l)a(l))

�(z) = max{0, z}



Mul1ple'Output'Units:''One@vs@Rest'

17'

Pedestrian' Car' Motorcycle' Truck'

h⇥(x) 2 RK

when'pedestrian''''''''''''when'car''''''''''''''when'motorcycle'''''''''''''when'truck'

h⇥(x) ⇡

2

664

0
0
0
1

3

775h⇥(x) ⇡

2

664

0
0
1
0

3

775h⇥(x) ⇡

2

664

0
1
0
0

3

775h⇥(x) ⇡

2

664

1
0
0
0

3

775

We'want:'

Slide'by'Andrew'Ng'

Multi-class 
Logistic 
Regression



Multi-layer Neural Network - Regression
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Regression

a(2) = �(⇥(1)a(1))

a(l+1) = �(⇥(l)a(l))

�(z) = max{0, z}by = ⇥(L)a(L)
L(y, by) = (y � by)2



Neural Networks are arbitrary function approximators

Cybenko, Hornik (theorem reproduced from CIML, Ch. 10)



Training Neural 
Networks 
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Seems simple enough, why are packages like PyTorch, Tensorflow, 
Theano, Cafe, MxNet synonymous with deep learning?

1. Automatic differentiation 

2. Convenient libraries 

3. GPU support 

Gradient Descent:
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Common training issues

Neural networks are non-convex
- For large networks, gradients can blow up or go to zero. 
This can be helped by batchnorm or ResNet architecture  

- Stepsize, batchsize, momentum all have large impact on 
optimizing the training error and generalization performance 

- Fancier alternatives to SGD (Adagrad, Adam, LAMB, etc.) can 
significantly improve training 

-Overfitting is common and not undesirable: typical to achieve 100% 
training accuracy even if test accuracy is just 80% 

- Making the network bigger may make training faster!



Training is too slow: 
- Use larger step sizes, develop step size reduction schedule 
- Use GPU resources  
- Change batch size 
- Use momentum and more exotic optimizers (e.g., Adam) 
- Apply batch normalization 
- Make network larger or smaller (# layers, # filters per layer, etc.) 

Test accuracy is low 
- Try modifying all of the above, plus changing other 

hyperparameters 

Common training issues



https://playground.tensorflow.org/

Intuition

https://playground.tensorflow.org/

