

- Origins: Algorithms that try to mimic the brain.
- Widely used in 80s and early 90s; popularity diminished in late 90s.
- Recent resurgence from 10s: state-of-the-art techniques for many applications:
	- Computer Vision
	- Natural language processing
	- Speech recognition
	- Decision-making / control problems (AlphaGo, Dota, robots)
- Limited theory:
	- Non-convexity
	- Model are complex but generalization error is small

This week: 1.Definitions of neural networks

2.Training neural networks: 1.Algorithm: back propagation 2.Putting it to work

3.Neural network architecture design: 1.Convolutional neural network

Single Node

 ${\sf Sigmoid}$ (logistic) activation function: $\;g(z) = \frac{1}{1-z}$

 $1 + e^{-z}$

 $a_j^{(j)}$ = "activation" of unit *i* in layer *j* Θ^(*j*) = weight matrix stores parameters from layer *j* to layer *j* + 1

$$
a_1^{(2)} = g(\Theta_{10}^{(1)}x_0 + \Theta_{11}^{(1)}x_1 + \Theta_{12}^{(1)}x_2 + \Theta_{13}^{(1)}x_3)
$$

\n
$$
a_2^{(2)} = g(\Theta_{20}^{(1)}x_0 + \Theta_{21}^{(1)}x_1 + \Theta_{22}^{(1)}x_2 + \Theta_{23}^{(1)}x_3)
$$

\n
$$
a_3^{(2)} = g(\Theta_{30}^{(1)}x_0 + \Theta_{31}^{(1)}x_1 + \Theta_{32}^{(1)}x_2 + \Theta_{33}^{(1)}x_3)
$$

\n
$$
h_{\Theta}(x) = a_1^{(3)} = g(\Theta_{10}^{(2)}a_0^{(2)} + \Theta_{11}^{(2)}a_1^{(2)} + \Theta_{12}^{(2)}a_2^{(2)} + \Theta_{13}^{(2)}a_3^{(2)})
$$

If network has s_j units in layer *j and* s_{j+1} units in layer *j*+1, then $\Theta^{(j)}$ has dimension $s_{j+1} \times (s_j+1)$ ''

$$
\Theta^{(1)} \in \mathbb{R}^{3 \times 4} \qquad \Theta^{(2)} \in \mathbb{R}^{1 \times 4}
$$

Slide by Andrew Ng

Multi-layer Neural Network - Binary Classification

$$
\hat{y} = g(\Theta^{(L)} a^{(L)})
$$

$$
L(y, \hat{y}) = y \log(\hat{y}) + (1 - y) \log(1 - \hat{y})
$$

$$
g(z) = \frac{1}{1 + e^{-z}}
$$
 Binary
Logistic
Regression

Multi-layer Neural Network - Binary Classification

$$
= g(\Theta^{(L)}a^{(L)}) \qquad L(y, \hat{y}) = y \log \frac{L(y, \hat{y})}{\sigma(z) = \max\{0, z\}}
$$

 \widehat{y} \mathcal{Y}

$$
L(y, \hat{y}) = y \log(\hat{y}) + (1 - y) \log(1 - \hat{y})
$$

$$
\sigma(z) = \max\{0, z\} \quad g(z) = \frac{1}{1 + e^{-z}} \text{ Dagistic \quad \text{Regression}
$$

Multiple Output Units: One-vs-Rest

Pedestrian Car Car Motorcycle Truck

 \mathcal{L} $\mathbf{1}$ $\overline{1}$

Multi-class Logistic Regression

We want:

Multi-layer Neural Network - Regression

 $= \Theta^{(L)} a^{(L)}$

…

$$
\hat{y} = \Theta^{(L)} a^{(L)} \qquad \begin{cases} L(y, \hat{y}) = (y - \hat{y})^2 \\ \sigma(z) = \max\{0, z\} \end{cases}
$$
 Regression

Neural Networks are arbitrary function approximators

Theorem 10 (Two-Layer Networks are Universal Function Approximators). Let F be a continuous function on a bounded subset of D dimensional space. Then there exists a two-layer neural network \hat{F} with a finite number of hidden units that approximate F arbitrarily well. Namely, for all x in the domain of F, $|F(x) - \hat{F}(x)| < \epsilon$.

Cybenko, Hornik (theorem reproduced from CIML, Ch. 10)

Training Neural Networks

Gradient Descent: $\Theta^{(l)} \leftarrow \Theta^{(l)} - \eta \nabla_{\Theta^{(l)}} L(y, \widehat{y}) \qquad \forall l$

 $\Theta^{(l)} \leftarrow \Theta^{(l)} - \eta \nabla_{\Theta^{(l)}} L(y, \hat{y}) \qquad \forall l$ Gradient Descent:

Seems simple enough, why are packages like PyTorch, Tensorflow, Theano, Cafe, MxNet synonymous with deep learning?

1. Automatic differentiation

2. Convenient libraries

3. GPU support

Gradient Descent:

Theano, Cafe, MxNet states of $\frac{1}{2}$ self. fc3 = nn. Linear(84, 10)

class Net(nn.Module):

```
2. Convenient libra
```
def __init__(self):
super(Net, self). init () super(Net, self).__init__()

1 input image channel, 6 output channels, 3x3 square convolu

kernel

aslarenced a sample for $2d(4, 6, 2)$ $self.comv1 = nn.Conv2d(1, 6, 3)$ self.conv2 = $nn.Cony2d(6, 16, 3)$ Seems simple enough,
Seems simple $\frac{4}{\pi}$ an affine operation: $y = Wx + b$
self.fc2 = nn.Linear(16 * 6 * 6, 120) # 6*6 from image dimension
self.fc2 = nn.Linear(120, 84) $def forward(self, x)$: # Max pooling over a (2, 2) window $x = F.max_pool2d(F.relu(self.comv1(x)), (2, 2))$ **1. Automatic differ** $*$ If the size is a square you can only specify a single number
x = F.max_pool2d(F.relu(self.conv2(x)), 2) $x = x \cdot view(-1, self.num_flat_features(x))$ $x = F$.relu(self.fc1(x)) $x = F$.relu(self.fc2(x)) $x = \text{self.fc3}(x)$ return x

```
# create your optimizer
optimizer = optim. SGD(net.parameters(), 1r=0.01)# in your training loop:
optimizer.zero_grad() # zero the gradient buffers
output = net(input)loss = criterion(output, target)loss.backward()
optimizer.step()
                  # Does the update
```
Common training issues

Neural networks are **non-convex**

- -For large networks, **gradients** can **blow up** or **go to zero**. This can be helped by **batchnorm** or ResNet architecture
- -**Stepsize**, **batchsize**, **momentum** all have large impact on optimizing the training error *and* generalization performance
- -Fancier alternatives to SGD (Adagrad, Adam, LAMB, etc.) can significantly improve training

-Overfitting is common and not undesirable: typical to achieve 100% training accuracy even if test accuracy is just 80%

- Making the network *bigger* may make training *faster!*

Common training issues

Training is too slow:

- Use larger step sizes, develop step size reduction schedule
- Use GPU resources
- Change batch size
- Use momentum and more exotic optimizers (e.g., Adam)
- Apply batch normalization
- Make network larger or smaller (# layers, # filters per layer, etc.)

Test accuracy is low

- Try modifying all of the above, plus changing other hyperparameters

<https://playground.tensorflow.org/>