Neural Networks




Neural Networks

e Origins: Algorithms that try to mimic the brain.
e Widely used in 80s and early 90s; popularity diminished in late 90s.
e Recent resurgence from 10s: state-of-the-art techniques for many
applications:
e Computer Vision
e Natural language processing
e Speech recognition
e Decision-making / control problems (AlphaGo, Dota, robots)
e Limited theory:
e Non-convexity
e Model are complex but generalization error is small



Neural Networks

This week:
1.Definitions of neural networks

2.Training neural networks:
1.Algorithm: back propagation
2.Putting it to work

3.Neural network architecture design:
1.Convolutional neural network



Neural Networks
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Slide by Andrew Ng

Neural Network

Layer 1
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OV = weight matrix stores parameters
from layerj to layerj + 1
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Multi-layer Neural Network - Binary Classification
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Multi-layer Neural Network - Binary Classification
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Multiple Output Units: One-vs-Rest
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Multi-layer Neural Network - Regression
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Neural Networks are arbitrary function approximators

Theorem 10 (Two-Layer Networks are Universal Function Approx-
imators). Let F be a continuous function on a bounded subset of D-
dimensional space. Then there exists a two-layer neural network F with a

finite number of hidden units that approximate F arbitrarily well. Namely,
for all x in the domain of F, |F(x) — F(x)| <.

Cybenko, Hornik (theorem reproduced from CIML, Ch. 10)



Training Neural
Networks
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Gradient Descent: @(l) — @(l) — nV@(Z)L(y, Z/U\) \4/

Seems simple enough, why are packages like PyTorch, Tensorflow,
Theano, Cafe, MxNet synonymous with deep learning?

1. Automatic differentiation

2. Convenient libraries

3. GPU support




Gradient Descent:

Seems simple enough,
Theano, Cafe, MxNet ¢

1. Automatic differ

2. Convenient Iibra‘

class Net(nn.Module):

def

def

__init__(self):

super(Net, self).__init__()

# 1 input image channel, 6 output channels, 3x3 square convolution
# kernel

self.convl = nn.Conv2d(1, 6, 3)

self.conv2 = nn.Conv2d(6, 16, 3)

# an affine operation: y = Wx + b

self.fcl = nn.Linear(16 * 6 * 6, 120) # 6#6 from image dimension
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)

forward(self, x):

# Max pooling over a (2, 2) window

x = F.max_pool2d(F.relu(self.convli(x)), (2, 2))

# If the size is a square you can only specify a single number
F.max_pool2d(F.relu(self.conv2(x)), 2)

x.view(-1, self.num_flat_features(x))

F.relu(self.fcl(x))

F.relu(self.fc2(x))

self.fc3(x)

return x

X X X X X
n

# create your optimizer

optimizer = optim.SGD(net.parameters(), 1lr=0.01)

# in your training loop:

optimizer.zero_grad() # zero the gradient buffers

output = net(input)

loss = criterion(output, target)
loss.backward()

optimizer.step() # Does the update




Common training issues

Neural networks are non-convex

- For large networks, gradients can blow up or go to zero.
This can be helped by batchnorm or ResNet architecture

- Stepsize, batchsize, momentum all have large impact on
optimizing the training error and generalization performance

- Fancier alternatives to SGD (Adagrad, Adam, LAMB, etc.) can
significantly improve training

-Overfitting is common and not undesirable: typical to achieve 100%
training accuracy even if test accuracy is just 80%

- Making the network bigger may make training faster!



Common training issues

Training is too slow:

- Use larger step sizes, develop step size reduction schedule

- Use GPU resources

- Change batch size

- Use momentum and more exotic optimizers (e.g., Adam)

- Apply batch normalization

- Make network larger or smaller (# layers, # filters per layer, etc.)

Test accuracy is low
- Try modifying all of the above, plus changing other
hyperparameters



Intuition

https://playground.tensorflow.org/


https://playground.tensorflow.org/

