Neural Networks

Neural Networks

e Origins: Algorithms that try to mimic the brain.
e Widely used in 80s and early 90s; popularity diminished in late 90s.
e Recent resurgence from 10s: state-of-the-art techniques for many
applications:
e Computer Vision
e Natural language processing
e Speech recognition
e Decision-making / control problems (AlphaGo, Dota, robots)
e Limited theory:
e Non-convexity
e Model are complex but generalization error is small

Neural Networks

This week:
1.Definitions of neural networks

2.Training neural networks:
1.Algorithm: back propagation
2.Putting it to work

3.Neural network architecture design:
1.Convolutional neural network

Neural Networks

Single Node

“bias unit”

-

/ \
‘\ L0 ,\\CIZ’O =1 X =
~N_7 \\
~ 0o
6, s

N\

@ 92 ,Z/—>h9(x)

Sigmoid (logistic) activation function: g(z) —

Based on slide by Andrew Ng

L0 0o
1 . (91
L9 0= (92
I3 il i (93 _
Binar
g (HTX) Logis’Zic
1 Regression

14 e 0'x

1

Slide by Andrew Ng

Neural Network

Layer 1

(Input Layer)

Layer 2 Layer 3
(Hidden Layer) (Output Layer)

11

OV = weight matrix stores parameters
from layerj to layerj + 1

e al) = “activation” of unit/ in layer
JaY ‘2>a53)_>h9(x) - : :

a\? = g(8\)xo + O\Va1 + 0 zs + 01 3)
a§2) = g((-')%)a:o + @()£C + @()x + @(1) 3)
a:(f) = g(@(l)x + @()x —|—@()2 —I—('-)%):B)
ho(@) = a® = g(02a® + 6P + 64?1+ 0@2)

If network has s; units in Iayerj and S;,; units in layer j+1,
then ©U) has dlmen5|on Siv1 X (S+1)

@(1) c R3X4 @(2) c R1X4

Slide by Andrew Ng

Multi-layer Neural Network - Binary Classification

o) = (@1 M)

L(y, y) = ylog(y) + (1 — y)log(1l —)

1 Binary
g(2) = Logistic
l+e= p .
egression

y=g(0Mah)

Multi-layer Neural Network - Binary Classification

al) = x

0@ = (0 g1

y=9(

O(L) (L)

L(y, y) = ylog(y) + (1 — y)log(1l —)

1 Binary
o(z) = max{0, z} g(z) = | —, Logistic
tTe Regression

Multiple Output Units: One-vs-Rest

OO

0
when pedestrian

Slide by Andrew Ng

>
2905

o O = O

when car

> 40“
ARK RN P

‘ N '
L
‘é.vo‘r« 9
NOZENF

s
2
o O

K
< he (X) c R
Multi-class
Logistic
Regression
E E
0 0
h@(X) ~ 1 h@(X) =~ O
- O - - 1 -
when motorcycle when truck

Multi-layer Neural Network - Regression

al) = x

0@ = (0 g1

L(ya @\) — (y - @\)2

o(z) = max{0, z} Regression

7= L)L)

Neural Networks are arbitrary function approximators

Theorem 10 (Two-Layer Networks are Universal Function Approx-
imators). Let F be a continuous function on a bounded subset of D-
dimensional space. Then there exists a two-layer neural network F with a

finite number of hidden units that approximate F arbitrarily well. Namely,
for all x in the domain of F, |F(x) — F(x)| <.

Cybenko, Hornik (theorem reproduced from CIML, Ch. 10)

Training Neural
Networks

a) = x
,@ — @y

a® = g (z®)

Z(l+1) — D40
al+) = g (Z(z+1))

7= g(O®aD)

L(y,y) =ylog(y)+ (1 — y)log(l — y)
1
1l +e%

g(z) =

Gradient Descent: O «+ @Y — nVgou L(y, §) Vi

Gradient Descent: @(l) — @(l) — nV@(Z)L(y, Z/U\) \4/

Seems simple enough, why are packages like PyTorch, Tensorflow,
Theano, Cafe, MxNet synonymous with deep learning?

1. Automatic differentiation

2. Convenient libraries

3. GPU support

Gradient Descent:

Seems simple enough,
Theano, Cafe, MxNet ¢

1. Automatic differ

2. Convenient Iibra‘

class Net(nn.Module):

def

def

__init__(self):

super(Net, self).__init__()

1 input image channel, 6 output channels, 3x3 square convolution
kernel

self.convl = nn.Conv2d(1, 6, 3)

self.conv2 = nn.Conv2d(6, 16, 3)

an affine operation: y = Wx + b

self.fcl = nn.Linear(16 * 6 * 6, 120) # 6#6 from image dimension
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)

forward(self, x):

Max pooling over a (2, 2) window

x = F.max_pool2d(F.relu(self.convli(x)), (2, 2))

If the size is a square you can only specify a single number
F.max_pool2d(F.relu(self.conv2(x)), 2)

x.view(-1, self.num_flat_features(x))

F.relu(self.fcl(x))

F.relu(self.fc2(x))

self.fc3(x)

return x

X X X X X
n

create your optimizer

optimizer = optim.SGD(net.parameters(), 1lr=0.01)

in your training loop:

optimizer.zero_grad() # zero the gradient buffers

output = net(input)

loss = criterion(output, target)
loss.backward()

optimizer.step() # Does the update

Common training issues

Neural networks are non-convex

- For large networks, gradients can blow up or go to zero.
This can be helped by batchnorm or ResNet architecture

- Stepsize, batchsize, momentum all have large impact on
optimizing the training error and generalization performance

- Fancier alternatives to SGD (Adagrad, Adam, LAMB, etc.) can
significantly improve training

-Overfitting is common and not undesirable: typical to achieve 100%
training accuracy even if test accuracy is just 80%

- Making the network bigger may make training faster!

Common training issues

Training is too slow:

- Use larger step sizes, develop step size reduction schedule

- Use GPU resources

- Change batch size

- Use momentum and more exotic optimizers (e.g., Adam)

- Apply batch normalization

- Make network larger or smaller (# layers, # filters per layer, etc.)

Test accuracy is low
- Try modifying all of the above, plus changing other
hyperparameters

Intuition

https://playground.tensorflow.org/

https://playground.tensorflow.org/

