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 What’s a decision tree?

* Regression tree:
- How to grow a tree: decrease in squared error
- How to prune a tree
- How to predict given a tree

* Classification tree
- How to grow a tree: misclassification rate, information gain, Gini index
- How to predict

* Summary



Tree based methods

* Divide the input space into a number of simple regions

* Use simple prediction rules in each region



Adaptive feature selection

* Prediction based on (a sequence of) decision rules
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Regression trees

Trees

Build a binary tree, splitting along axes




» The goal is to find boxes Ry, ..., Ry that minimize the
RSS, given by

J
2: 2: (yz _ @Rj)Qa

J=1 ’iERj

where ¢ R, 18 the mean response for the training
observations within the jth box.



More details of the tree-building process

Unfortunately, it is computationally infeasible to consider
every possible partition of the feature space into J boxes.

For this reason, we take a top-down, greedy approach that
is known as recursive binary splitting.

The approach is top-down because it begins at the top of
the tree and then successively splits the predictor space;
each split is indicated via two new branches further down
on the tree.

It is greedy because at each step of the tree-building
process, the best split is made at that particular step,
rather than looking ahead and picking a split that will lead
to a better tree in some future step.
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How to grow a regression tree

Ri(j,s) = {X|X, < s} and Ra(j,s) = {X|X; > ).

Then we seek the splitting variable 3 and split point s that solve

min{min Z (y; — ¢1)* + min Z (yi—cg)ﬂ.

.ja S C1 ) C2 .
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Pruning a tree

The process described above may produce good predictions
on the training set, but is likely to overfit the data, leading
to poor test set performance. Why?

A smaller tree with fewer splits (that is, fewer regions
Rq,...,Ry) might lead to lower variance and better
interpretation at the cost of a little bias.

One possible alternative to the process described above is
to grow the tree only so long as the decrease in the RSS
due to each split exceeds some (high) threshold.

This strategy will result in smaller trees, but is too
short-sighted: a seemingly worthless split early on in the
tree might be followed by a very good split — that is, a
split that leads to a large reduction in RSS later on.
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Tree pruning

* Greedily grow the tree is prone to overfitting

* Tree pruning phase

- Searching over all trees - and find the one with the best fit to data and

smallest size
mTin - Z L(Sy) + A|T]

veT
» We can prune back tree branches (i.e. merge a pair of leaf nodes)

recursively to choose the tree that minimizes the above objective
- Due to the greedy nature for the growth phase, the combined growth +
pruning process is not guaranteed to find the optimal tree



Learning decision trees

> Start from empty decision tree
> Split on next best attribute (feature)
- Use, for example, information gain to select attribute
- Spliton argmaxIG(X;) = argmax H(Y) — H(Y | X;)
> Recurse Z Z
> Prune X<t

M
fz)= > emlI(z € Ry).
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Classification tree

* How to split a node?

* How to predict in the end?



From Entropy to Info Gain: A Brief Review of Entropy

Q Entropy (Information Theory)

O A measure of uncertainty associated with a random number

O Calculation: For a discrete random variable Y taking m distinct values {y,, y,, ..., Y}

m

—> "pilog(p;)
1=1

O Interpretation

where p; = P(Y =y,)

O Higher entropy = higher uncertainty

O Lower entropy = lower uncertainty

QO Conditional entropy

H(Y|X) =

W

H(Y|X =)

0.5

HX)
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Information Gain: An Attribute Selection Measure

Q Select the attribute with the highest information gain (used in typical
decision tree induction algorithm: ID3/C4.5)

Q Let p; be the probability that an arbitrary tuple in D belongs to class C,
estimated by |C; ;|/|D]|

O Expected information (entropy) needed to classify a tuple in D:

Info(D) = _Zpi log,(p,)
i=1
Q Information needed (after using A to split D into v partitions) to classify D:

InfoA(D)=i|D

|

! _x Info(D .
D ifo(D))
O Information gained by branching on attribute A

Gain(A) = Info(D)— Info (D)



Example: Attribute Selection with Information Gain

Q Class P: buys_computer = “yes”

5 4
Q Class N: buys_ computer = ”no” 10,45 (D) = 77 1(2,3) + 7 1(4,0)
9 5
Info(D) = 19,5) =~ log, ()~ - log, () =0.940 + 3 1(3.2)=0.694

I(pi, ny)

1% 1(2,3) means “age <=30" has 5 out of 14

samples, with 2 yes’es and 3 no’s.

age | income [student| credit rating [buys computer]  Hence
Gain(age) = Info(D) — Info

Similarly, we can get
Gain(income) = 0.029
Gain(student) =0.151

Gain(credit _rating) =0.048

(D) =0.246

age
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Another Measure: Gini Index

O Gini index: Used in CART, and also in IBM IntelligentMiner
QO If a data set D contains examples from n classes, gini index, gini(D) is defined as
0 gini(D) =1 - X}, p}
Q pj is the relative frequency of class j in D
Q If a data set D is split on A into two subsets D, and D,, the gini index gini(D) is
defined as
0 gini (D) = % gini(D,) + 'l’;—zl' gini(D,)
O Reduction in Impurity:
0 Agini(A) = gini(D) — gini,(D)

Q The attribute provides the smallest gini,;. (D) (or the largest reduction in
impurity) is chosen to split the node (need to enumerate all the possible splitting
points for each attribute)
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Computation of Gini Index

O Example: D has 9 tuples in buys_computer = “yes” and 5 in “no”

2 2
gini(D) =1 —(1%] —(%) =0.459

0 Suppose the attribute income partitions D into 10 in D;: {low, medium} and 4 in D,

. . 10 . . 4 . .
d ginlincomee{low,medium} (D) = g (D7) + aglnl(Dz)

(3ot
14 10 10 14 4 4
= Giniincomee{high} (D)
3 GiNigoy highy 1S 0-458; GiNiggiym highy 1S 0-450
@ Thus, split on the {low,medium} (and {high}) since it has the lowest Gini index
Q All attributes are assumed continuous-valued

O May need other tools, e.g., clustering, to get the possible split values
O Can be modified for categorical attributes
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