

STAT 37710 / CMSC 35400 / CAAM 37710 Machine Learning

Bagging & Random Forests

Cong Ma

Recall: decision trees

• Decision Trees are

- low bias, high variance models
 - Unless you regularize a lot...
 - ...but then often worse than Linear Models
- highly non-linear
 - Can easily overfit
 - Different training samples can lead to very different trees

$$\underbrace{\mathbb{E}_{D}\left[\left(y-\hat{h}_{D}(\mathbf{x})\right)^{2}\right]}_{\text{expected error}} = \underbrace{\mathbb{E}_{D}\left[\hat{h}_{D}(\mathbf{x})-y\right]^{2}}_{\text{bias}} + \underbrace{\mathbb{E}_{D}\left[\left(\hat{h}_{D}(\mathbf{x})-\mathbb{E}_{D'}\hat{h}_{D'}(\mathbf{x})\right)^{2}\right]}_{\text{variance}}$$

FIGURE 9.2. Partitions and CART. Top right panel shows a partition of a two-dimensional feature space by recursive binary splitting, as used in CART, applied to some fake data. Top left panel shows a general partition that cannot be obtained from recursive binary splitting. Bottom left panel shows the tree corresponding to the partition in the top right panel, and a perspective plot of the prediction surface appears in the bottom right panel.

How to improve decision trees?

- What's the problem of decision tree?
 - Low bias but high variance
- We'd like to keep the low bias, but decrease the variance
 - Key idea: build multiple trees and take the average
 - We know averaging reduces variance (Caveat!)

Average over multiple different datasets

- Goal: reduces variance
- Ideal setting:
 - many training sets D'
 - sample independently
 - train model using each D'
 - average predictions

P(x,y)

Person	Age	Male?	Height > 55″
James	11	1	1
Jessica	14	0	1
Alice	14	0	1
Amy	12	0	1
Bob	10	1	1
Xavier	9	1	0
Cathy	9	0	1
Carol	13	0	1
Eugene	13	1	0
Rafael	12	1	1
Dave	8	1	0
Peter	9	1	0
Henry	13	1	0
Erin	11	0	0
Rose	7	0	0
lain	8	1	1
Paulo	12	1	0
Frank	9	1	1
Jill	13	0	0
Leon	10	1	0
Sarah	12	0	0
Gena	8	0	0
Patrick	5	1	1

D'

Person	Age	Male?	Height > 55"
Alice	14	0	1
Bob	10	1	1
Carol	13	0	1
Dave	8	1	0
Erin	11	0	0
Frank	9	1	1
Gena	8	0	0

"Bagging Predictors" [Leo Breiman, 1994]

Bagging

- Goal: reduces variance
- In practice:
 - fixed training set D
 - Resample D' with replacement from D
 - train model using each D'
 - average predictions

Person	Age	Male?	Height > 55″
James	11	1	1
Jessica	14	0	1
Alice	14	0	1
Amy	12	0	1
Bob	10	1	1
Xavier	9	1	0
Cathy	9	0	1
Carol	13	0	1
Eugene	13	1	0
Rafael	12	1	1
Dave	8	1	0
Peter	9	1	0
Henry	13	1	0
Erin	11	0	0
Rose	7	0	0
lain	8	1	1
Paulo	12	1	0
Frank	9	1	1
Jill	13	0	0
Leon	10	1	0
Sarah	12	0	0
Gena	8	0	0
Patrick	5	1	1

D'

Person	Age	Male?	Height > 55"
Alice	14	0	1
Bob	10	1	1
Carol	13	0	1
Dave	8	1	0
Erin	11	0	0
Frank	9	1	1
Gena	8	0	0

"Bagging Predictors" [Leo Breiman, 1994]

Bagging = Bootstrap Aggregating

• Learns a predictor by aggregating the predictors learned over multiple random draws (bootstrap samples) from the training data

- A bootstrap sample of size m from $D: \{(\mathbf{x}_i, y_i), i = 1, \dots, n\}$ is

$$\{(\mathbf{x}'_i, y'_i), i = 1, \dots, m\}$$

where each (x_i', y_i') is drawn uniformly at random from D (with replacement)

Bagged trees

Algorithm:

- 1. Obtain *B* bootstrap resamples of our training sample
- 2. For each resample, grow a large (low bias, high variance) tree
- 3. Average/aggregate predictions from all of the trees
 - a. Regression: take the mean of the *B* predictions
 - b. Classification: take the majority vote of the *B* predictions

Aggregating weak predictors

- Imagine we have a model we can fit to the training data to produce a predictor that we use to predict *E(Y|X=x)*
 - E.g. a decision tree or logistic regression
- With bagging, we
 - compute B different bootstrap samples
 - learn a predictor for each one
 - aggregate the predictors to form the target predictor

Bootstrap

- ► Assume you have a sample X₁,..., X_n of points and, say, an estimate Ô of a true parameter O of this population. You would like to know the distribution of the estimate Ô (for example, because you want to construct confidence sets).
- You now draw a subsample of m points of the original sample (with our without replacement), and on this subsample you compute an estimate of the parameter you are interested in.
- ► You repeat this procedure B times, resulting in B bootstrap estimates \(\heta_1, ..., \heta_B\).
- This set now gives an "indication" about how your estimate is distributed, and you can compute its mean, its variance, confidence sets, etc.

Bagging

- ► As in bootstrap, you generate B bootstrap samples of your original sample, and on each of them compute the estimate you are interested in: Ô₁, ..., Ô_B
- As your final estimate, you then take the average: $\hat{\Theta}_{bag} = mean(\hat{\Theta}_1, ..., \hat{\Theta}_B).$
- ► The advantage of this procedure is that the estimate \(\Omega_{bag}\) can have a much smaller variance than each of the individual estimates \(\Theta_b\):
 - ► If the estimates $\hat{\Theta}_b$ were i.i.d. with variance σ^2 , then the variance of $\hat{\Theta}_{bag}$ would be σ^2/B .
 - If the estimates are identically distributed but have a (hopefully small) positive pairwise correlation ρ, then the variance of Ô_{bag} is ρσ² + (1 − ρ) σ²/B. If ρ is small and B is large, this is good.

Decorrelate the trees

- Key: we'd like "diversity" in the trees we build, or further decorrelate the trees we build
- Use random features in splitting the nodes!

Random Forests

• Goal: reduce variance

- Bagging can only do so much
- Resampling training data

• Random Forests: sample data & features!

- Sample S'
- Train DT
 - At each node, sample features
- Average predictions

Random Forests

• Extension of bagging to sampling features

• Generate bootstrap D' from D

- Train DT top-down on D'
- Each node, sample subset of features for splitting
 - Can also sample a subset of splits as well
- Average predictions of all DTs

Algorithm for random forest

Algorithm 15.1 Random Forest for Regression or Classification.

1. For b = 1 to B:

- (a) Draw a bootstrap sample \mathbf{Z}^* of size N from the training data.
- (b) Grow a random-forest tree T_b to the bootstrapped data, by recursively repeating the following steps for each terminal node of the tree, until the minimum node size n_{min} is reached.
 - i. Select m variables at random from the p variables.
 - ii. Pick the best variable/split-point among the m.
 - iii. Split the node into two daughter nodes.
- 2. Output the ensemble of trees $\{T_b\}_1^B$.

To make a prediction at a new point x:

Regression: $\hat{f}_{rf}^B(x) = \frac{1}{B} \sum_{b=1}^B T_b(x).$

Classification: Let $\hat{C}_b(x)$ be the class prediction of the *b*th random-forest tree. Then $\hat{C}^B_{\rm rf}(x) = majority \ vote \ \{\hat{C}_b(x)\}_1^B$.

Random Forests perform the best

"An Empirical Evaluation of Supervised Learning in High Dimensions" Caruana, Karampatziakis & Yessenalina, ICML 2008

References & acknowledgement

- Hastie et al. (2009). "The Elements of Statistical Learning"
 - Ch 8.7, "Bagging"
- Willett & Chen (2020). "<u>CMSC 35400: Machine Learning</u>"
- Yue (2018). "<u>Machine Learning & Data Mining</u>"
 - Lecture 5, "Decision Trees, Bagging & Random Forests"
- Breiman (1994). "Bagging Predictors"
- Breiman (1997). "Random Forests Random Features"