
Bagging & Random Forests

STAT 37710 / CMSC 35400 / CAAM 37710
Machine Learning

Cong Ma

Recall: decision trees

2

• Decision Trees are
- low bias, high variance models

§ Unless you regularize a lot…
§ …but then often worse than Linear Models

- highly non-linear
§ Can easily overfit
§ Different training samples can lead to very different trees

306 9. Additive Models, Trees, and Related Methods

|

t1

t2

t3

t4

R1

R1

R2

R2

R3

R3

R4

R4

R5

R5

X1

X1X1

X2

X
2

X
2

X1 ≤ t1

X2 ≤ t2 X1 ≤ t3

X2 ≤ t4

FIGURE 9.2. Partitions and CART. Top right panel shows a partition of a
two-dimensional feature space by recursive binary splitting, as used in CART,
applied to some fake data. Top left panel shows a general partition that cannot
be obtained from recursive binary splitting. Bottom left panel shows the tree cor-
responding to the partition in the top right panel, and a perspective plot of the
prediction surface appears in the bottom right panel.

<latexit sha1_base64="LwcHcH8RiJxlCAxyQecbxuAMMoM=">AAADbHichVJbaxNBFJ5NvNR6S9W3IgwGNUUMSSjaF6FgW32sYNpCNg2zs2ezQ3dnl5mzIWGYP+g/8E+IPuqTs9ml2jTQA8t+cy7fOd+ZCfJEaOz1vnuN5q3bd+5u3Nu8/+Dho8etrScnOisUhyHPkkydBUxDIiQMUWACZ7kClgYJnAYXH8v46QyUFpn8ioscximbShEJztC5Jlse9wsZggoU42D8lGEcBObQTg6on0CEo+rXWdC31I8ZmtiFOlVeZOZ2x1diGuPO+aACYzsxPsIcDcxz4AghBaUyZS39QG9otZbf9V3U1OeDS/JAMO0o39DlcbkGc5Qp0PhJAUhrblJVy1qvqdT6r8YcvLaXeeVhrXy6qn/GlGCSg7V20mr3ur2l0eugX4M2qe140vrlhxkvUpDIE6b1qN/LcWyYQsETsJt+oSFn/IJNYeSgZCnosVmuwdKXzhPSKFPuk0iX3v8rDEu1XqSByyx16NVY6VwXGxUY7Y2NkHmBIHnVKCoSihktnxYNhXI3niwcYFwJNyvlMXNXgO4BXmEKZyLX9dTzamy3o/7qRq6Dk0G3/667+2W3vb9Xb2uDbJMXpEP65D3ZJ5/JMRkS7n3zfnq/vT+NH81nze3m8yq14dU1T8kVa776CzLpIeY=</latexit>

ED

⇣
y � ĥD(x)

⌘2
�

| {z }
expected error

= ED

h
ĥD(x)� y

i2

| {z }
bias

+ED

⇣
ĥD(x)� ED0 ĥD0(x)

⌘2
�

| {z }
variance

How to improve decision trees?

3

• What’s the problem of decision tree?
- Low bias but high variance

• We’d like to keep the low bias, but decrease the variance
- Key idea: build multiple trees and take the average
- We know averaging reduces variance (Caveat!)

Average over multiple different datasets

4

• Goal: reduces variance

• Ideal setting:
- many training sets D’

§ sample independently

- train model using each D’
- average predictions

Person Age Male? Height > 55”

Alice 14 0 1

Bob 10 1 1

Carol 13 0 1

Dave 8 1 0

Erin 11 0 0

Frank 9 1 1

Gena 8 0 0

Person Age Male? Height > 55”

James 11 1 1

Jessica 14 0 1

Alice 14 0 1

Amy 12 0 1

Bob 10 1 1

Xavier 9 1 0

Cathy 9 0 1

Carol 13 0 1

Eugene 13 1 0

Rafael 12 1 1

Dave 8 1 0

Peter 9 1 0

Henry 13 1 0

Erin 11 0 0

Rose 7 0 0

Iain 8 1 1

Paulo 12 1 0

Frank 9 1 1

Jill 13 0 0

Leon 10 1 0

Sarah 12 0 0

Gena 8 0 0

Patrick 5 1 1

P(x,y)

D’

http://statistics.berkeley.edu/sites/default/files/tech-reports/421.pdf

“Bagging Predictors” [Leo Breiman, 1994]

http://statistics.berkeley.edu/sites/default/files/tech-reports/421.pdf

Bagging

5

• Goal: reduces variance

• In practice:
- fixed training set D

§ Resample D’ with replacement from D

- train model using each D’
- average predictions

Person Age Male? Height > 55”

Alice 14 0 1

Bob 10 1 1

Carol 13 0 1

Dave 8 1 0

Erin 11 0 0

Frank 9 1 1

Gena 8 0 0

Person Age Male? Height > 55”

James 11 1 1

Jessica 14 0 1

Alice 14 0 1

Amy 12 0 1

Bob 10 1 1

Xavier 9 1 0

Cathy 9 0 1

Carol 13 0 1

Eugene 13 1 0

Rafael 12 1 1

Dave 8 1 0

Peter 9 1 0

Henry 13 1 0

Erin 11 0 0

Rose 7 0 0

Iain 8 1 1

Paulo 12 1 0

Frank 9 1 1

Jill 13 0 0

Leon 10 1 0

Sarah 12 0 0

Gena 8 0 0

Patrick 5 1 1

D

D’

http://statistics.berkeley.edu/sites/default/files/tech-reports/421.pdf

“Bagging Predictors” [Leo Breiman, 1994]

http://statistics.berkeley.edu/sites/default/files/tech-reports/421.pdf

Bagging = Bootstrap Aggregating

6

• Learns a predictor by aggregating the predictors learned over
multiple random draws (bootstrap samples) from the training data
- A bootstrap sample of size m from is

where each (xi’, yi’) is drawn uniformly at random from D (with replacement)

<latexit sha1_base64="pFDKBv6HxI3zttEi4ImrcmPX9Ws=">AAACHnicbVDLSgMxFM34rPU16tJNsAgKpcyIjyIIBV24rGCt0ClDJs20wUxmSO6Iw9AvceOvuHGhiOBK/8a0zkKrBwKHc+5Nck6QCK7BcT6tqemZ2bn50kJ5cWl5ZdVeW7/Scaooa9FYxOo6IJoJLlkLOAh2nShGokCwdnBzOvLbt0xpHstLyBLWjUhf8pBTAkby7YOzY+wJFoKX4x0vIjAIwvxu6PNq5vPdKuYnbhV7vRh0FUvsKd4fgDf07YpTc8bAf4lbkAoq0PTtd3MHTSMmgQqidcd1EujmRAGngg3LXqpZQugN6bOOoZJETHfzcbwh3jZKD4exMkcCHqs/N3ISaZ1FgZkcBdCT3kj8z+ukENa7OZdJCkzS74fCVGCI8agr3OOKURCZIYQqbv6K6YAoQsE0WjYluJOR/5KrvZp7WNu/2K806kUdJbSJttAOctERaqBz1EQtRNE9ekTP6MV6sJ6sV+vte3TKKnY20C9YH19s3KDO</latexit>

D : {(xi, yi), i = 1, . . . , n}
<latexit sha1_base64="dKwWkkXNGh2H12oRPCPvsUBXf+0=">AAACHXicbVDLSgMxFM3UV62vqks3wSJWKGVGinYjFNy4rGAf0BmGTJppQzMPkjtiGfojbvwVNy4UceFG/BszbRfaeiHhcM69NznHiwVXYJrfRm5ldW19I79Z2Nre2d0r7h+0VZRIylo0EpHsekQxwUPWAg6CdWPJSOAJ1vFG15neuWdS8Si8g3HMnIAMQu5zSkBTbrFmC+aDneKyHRAYen76MDl1eWWsr7MK5ldWBdv9CFQFB9iWfDAEe+IWS2bVnBZeBtYclNC8mm7xU++gScBCoIIo1bPMGJyUSOBUsEnBThSLCR2RAetpGJKAKSedupvgE830sR9JfULAU/b3REoCpcaBpzszC2pRy8j/tF4Cft1JeRgnwEI6e8hPBIYIZ1HhPpeMghhrQKjk+q+YDokkFHSgBR2CtWh5GbTPq9ZFtXZbKzXq8zjy6AgdozKy0CVqoBvURC1E0SN6Rq/ozXgyXox342PWmjPmM4foTxlfP8YroHM=</latexit>

{(x0
i, y

0
i), i = 1, . . . ,m}

Bagged trees

7

Aggregating weak predictors

8

• Imagine we have a model we can fit to the training data to produce
a predictor that we use to predict E(Y|X=x)
- E.g. a decision tree or logistic regression

• With bagging, we
- compute B different bootstrap samples
- learn a predictor for each one
- aggregate the predictors to form the target predictor

Bootstrap

9

Bagging

10

Decorrelate the trees

11

• Key: we’d like “diversity” in the trees we build, or further
decorrelate the trees we build

• Use random features in splitting the nodes!

Random Forests

12

• Goal: reduce variance
- Bagging can only do so much
- Resampling training data

• Random Forests: sample data & features!
- Sample S’
- Train DT

§ At each node, sample features

- Average predictions

Random Forests

• Extension of bagging to sampling features

• Generate bootstrap D’ from D
- Train DT top-down on D’
- Each node, sample subset of features for splitting

§ Can also sample a subset of splits as well

• Average predictions of all DTs

13“Random Forests – Random Features” [Leo Breiman, 1997]
http://oz.berkeley.edu/~breiman/random-forests.pdf

http://oz.berkeley.edu/~breiman/random-forests.pdf

Algorithm for random forest

14

Better

Average performance over many datasets
Random Forests perform the best

An Empirical Evaluation of Supervised Learning in High Dimensions

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 100 1000 10000 100000 1e+006

cu
m

ul
at

iv
e

sc
or

e

dimension

ANN
BAGDT
BSTDT

KNN
SVM

LR
BSTST

PRC
RF

Figure 1. Cumulative standardized scores of each learning
algorithm as a function of the dimension.

modest dimensions, but lose ground to random forests,
neural nets, and SVMs as dimensionality increases.
Also, linear methods such as logistic regression begin
to catch up as dimensionality increases.

Figure 2 shows the same results as Figure 1, but pre-
sented differently to avoid the complexity of accumu-
lation. Here each point in the graph is the average per-
formance of the 5 problems of lowest dimension (from
761 to 1344), the 5 problems of highest dimension (21K
to 685K) and 5 problems of intermediate dimension
(927 to 105K). Care must be used when interpreting
this graph because each point averages over only 5 data
sets. The results suggest that random forests overtake
boosted trees. They are among the top performing
methods for high-dimensional problems together with
logistic regression and SVMs. Again we see that neu-
ral nets are consistently yielding above average per-
formance even in very high dimension. Boosted trees,
bagged trees, and KNN do not appear to cope well
in very high dimensions. Boosted stumps, percep-
trons, and Naive Bayes perform worse than the typical
method regardless of dimension.

Figure 3 shows results similar to Figure 2 but only for
different classes of SVMs: linear-only (L), kernel-only
(K) and linear that can optimize accuracy or AUC
(L+P) (Joachims, 2006). We also plot combinations
of these (L+K and L+K+P) where the specific model
that is best on the validation set is selected. The re-
sults suggest that the best overall performance with
SVMs results from trying all possible SVMs (using the
validation set to pick the best). Linear SVMs that
can optimize accuracy or AUC outperform simple lin-
ear SVMs at modest dimensions, but have little effect
when dimensionality is very high. Similarly, simple lin-
ear SVMs though not competitive with kernel SVMs at
low dimensions, catch up as dimensionality increases.

-0.035

-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

 0

 0.005

 0.01

 0.015

 100 1000 10000 100000 1e+006

m
ov

av
g

sc
or

e

dimension

ANN
BAGDT
BSTDT

KNN
SVM

LR
BSTST

PRC
RF

Figure 2. Moving average standardized scores of each
learning algorithm as a function of the dimension.

-0.035

-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

 0

 0.005

 0.01

 0.015

 100 1000 10000 100000 1e+006

av
er

ag
e

sc
or

e

dimension

SVM-L
SVM-L+P

SVM-K
SVM-L+K

SVM-L+K+P

Figure 3. Moving average standardized scores for different
SVM algorithms as a function of the dimension.

4. Bootstrap Analysis

We could not afford cross validation in these experi-
ments because it would be too expensive. For some
datasets and some methods, a single parameter set-
ting can take days or weeks to run. Instead we used
large test sets to make our estimates more reliable and
adequately large validation sets to make sure that the
parameters we select are good. However, without a
statistical analysis, we cannot be sure that the differ-
ences we observe are not merely statistical fluctuation.

To help insure that our results would not change if we
had selected datasets differently we did a bootstrap
analysis similar to the one in (Caruana & Niculescu-
Mizil, 2006). For a given metric we randomly select
a bootstrap sample (sampling with replacement) from
our 11 problems and then average the performance
of each method across the problems in the bootstrap
sample. Then we rank the methods. We repeat the
bootstrap sampling 20,000 times and get 20,000 po-
tentially different rankings of the learning methods.

“An Empirical Evaluation of Supervised Learning in High Dimensions”
Caruana, Karampatziakis & Yessenalina, ICML 2008

Random Forests

References & acknowledgement

16

• Hastie et al. (2009). “The Elements of Statistical Learning”
- Ch 8.7 , “Bagging”

• Willett & Chen (2020). “CMSC 35400: Machine Learning”

• Yue (2018). “Machine Learning & Data Mining”
- Lecture 5, “Decision Trees, Bagging & Random Forests”

• Breiman (1994). “Bagging Predictors”

• Breiman (1997). “Random Forests – Random Features”

https://voices.uchicago.edu/machinelearning/stats37710-cmsc35400-s20/
http://www.yisongyue.com/courses/cs155/2018_winter/

