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Recall: decision trees

 Decision Trees are

- low bias, high variance models - W -
= Unless you regularize a lot. .. N
= . .butthen often worse than Linear Models

- highly non-linear xisn,
= Can easily overfit vi<u - ox<n

= Different training samples can lead to very different trees
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~ ~ ~ ~ two-dimensional feature space by recursive binary splitting, as used in A
2 2 2 1i l f b bi litti d in CART
ED — hD X ) = ]ED |:hD X) — i| —|—ED <h/D X) — ED’ hD’ X ) applied to some fake data. Top left panel shows a general partition that cannot
(y ( ) ( ) Y ( ) < ) be obtained from recursive binary splitting. Bottom left panel shows the tree cor-
\a ~~ o~ ~ ' - 7

responding to the partition in the top right panel, and a perspective plot of the
expected error bias variance prediction surface appears in the bottom right panel.




How to improve decision trees?

* What’s the problem of decision tree?
- Low bias but high variance

* We'd like to keep the low bias, but decrease the variance
- Key idea: build multiple trees and take the average
- We know averaging reduces variance (Caveat!)



Average over multiple different datasets

 Goal: reduces variance P(X,y)
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“Bagging Predictors” [Leo Breiman, 1994]
http://statistics.berkeley.edu/sites/default/files/tech-reports/421.pdf
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Bagging
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Bagging = Bootstrap Aggregating

 Learns a predictor by aggregating the predictors learned over

multiple random draws (bootstrap samples) from the training data
- Abootstrap sample of sizemfrom D : {(x;,v;),i =1,...,n} is

{(x\,y),i=1,...,m}

where each (x/, y;) is drawn uniformly at random from D (with replacement)



Bagged trees

Algorithm:

1. Obtain B bootstrap resamples of our training sample
2. For each resample, grow a large (low bias, high variance) tree
3. Average/aggregate predictions from all of the trees

a. Regression: take the mean of the B predictions

b. Classification: take the majority vote of the B predictions



Aggregating weak predictors

* Imagine we have a model we can fit to the training data to produce

a predictor that we use to predict £(Y|X=x)
- E.g. adecision tree or logistic regression

* With bagging, we
- compute B different bootstrap samples

- learn a predictor for each one
- aggregate the predictors to form the target predictor



Bootstrap

» Assume you have a sample X7, ..., X,, of points and, say, an
estimate O of a true parameter © of this population. You
would like to know the distribution of the estimate © (for
example, because you want to construct confidence sets).

» You now draw a subsample of m points of the original sample
(with our without replacement), and on this subsample you
compute an estimate of the parameter you are interested in.

» You repeat this procedure B times, resulting in B bootstrap
estimates O, ..., Op.

» This set now gives an “indication” about how your estimate is
distributed, and you can compute its mean, its variance,
confidence sets, etc.



Bagging

» As in bootstrap, you generate B bootstrap samples of your
original sample, and on each of them compute the estimate
you are interested in: ©4,...,0p

» As your final estimate, you then take the average:
Opeg = mean(0©q, ..., 0p).

» The advantage of this procedure is that the estimate ©,, can
have a much smaller variance than each of the individual
estimates (:)b:

» |f the estimates @b were i.i.d. with variance o2, then the
variance of ©y,, would be ¢%/B .

» If the estimates are identically distributed but have a
(hopefully small) positive pairwise correlation p, then the
variance of ébag is po? + (1 — p)"g. If pis small and B is
large, this is good.



Decorrelate the trees

» Key: we’d like “diversity” in the trees we build, or further
decorrelate the trees we build

* Use random features in splitting the nodes!



Random Forests

* Goal: reduce variance
- Bagging can only do so much
- Resampling training data

* Random Forests: sample data & features!
- Sample &’
- Train DT

= At each node, sample features

- Average predictions



Random Forests

* Extension of bagging to sampling features

* Generate bootstrap D’ from D

- Train DT top-down on D’
- Each node, sample subset of features for splitting

= Can also sample a subset of splits as well

* Average predictions of all DTs

“Random Forests — Random Features” [Leo Breiman, 1997]
http://oz.berkeley.edu/~breiman/random-forests.pdf
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Algorithm for random forest

Algorithm 15.1 Random Forest for Regression or Classification.
1. For b=1 to B:

(a) Draw a bootstrap sample Z* of size N from the training data.

(b) Grow a random-forest tree T to the bootstrapped data, by re-
cursively repeating the following steps for each terminal node of
the tree, until the minimum node size n,,;, is reached.

i. Select m variables at random from the p variables.
ii. Pick the best variable/split-point among the m.
iii. Split the node into two daughter nodes.

2. Output the ensemble of trees {T}}5.
To make a prediction at a new point z:
Regression: ff(w) = Ele Ty(x).

Classification: Let Cy(x) be the class prediction of the bth random-forest
tree. Then CE(z) = majority vote {Cy(z)}P.
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Average performance over many datasets
Random Forests perform the best

“An Empirical Evaluation of Supervised Learning in High Dimensions”
Caruana, Karampatziakis & Yessenalina, ICML 2008
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