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AdaBoost for binary classification

We begin by describing the most popular boosting algorithm due to
Freund and Schapire (1997) called “AdaBoost.M1.” Consider a two-class
problem, with the output variable coded as Y € {—1,1}. Given a vector of
predictor variables X, a classifier G(X) produces a prediction taking one
of the two values {—1,1}. The error rate on the training sample is

| N
IT = — ;I(yi #+ G(z;)),

and the expected error rate on future predictions is Exy I(Y # G(X)).

» Purpose of Boosting: sequentially apply the weak classification algorithm to repeatedly
modified versions of the data, thereby producing a sequence of weak classifiers



Weak learner to strong learner?

« 1988 Kearns and Valiant: “Can weak learners be
combined to create a strong learner?”

Weak learner definition (informal):

An algorithm A is a weak learner for a hypothesis class H that maps X to
{—1, 1} if for all input distributions over X and h € H, we have that A correctly
classifies h with error at most 1/2 — ~

« 2001 Friedman: “Practical for arbitrary losses”



Figure for AdaBoost
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FIGURE 10.1. Schematic of AdaBoost. Classifiers are trained on weighted ver-
stons of the dataset, and then combined to produce a final prediction.



Given: (X1, V1 )s. ... (Xm. V) Where x; € 3%” y, e{—1,+1}.

Initialize| Dy (i) = 1/m fori=1,. Initial Distribution of Data

Forr=1,....T:

e | Train weak learner using distribution D;. |
[Get weak hypothesis ; : 2" — {—1, —I—l}]

e Aim: select i, with low weighted error:

Train model

& = Priup, [h(x;) # yi].| < Error of model

1 1_81‘ . e
= z1n - ) Coefficient of model
1

e Update, fori=T1,...,m

e Choose|oy

[\

D, (i — 04 yihy (X L
[D,+1(i): t(z)exp(Zta;y t(x))J Update Distribution

where Z; is a normalization factor (chosen so that D, ; will be a distribution).

Output the final hypothesis:

T
H(x) = sign (Z octht(x)> .| <— Final average

Theorem: training error drops exponentially fast

http://rob.schapire.net/papers/explaining-adaboost.pdf
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Boosting fits an additive model

The success of boosting is really not very mysterious. The key lies in ex-
pression (10.1). Boosting is a way of fitting an additive expansion in a set
of elementary “basis” functions. Here the basis functions are the individual

classifiers G,,(x) € {—1,1}. More generally, basis function expansions take
the form

f(.’)?) = Z 6’mb(x§7m)a (10.3)

where (3,,,m = 1,2,..., M are the expansion coefficients, and b(z;vy) € IR
are usually simple functions of the multivariate argument x, characterized

by a set of parameters v. We discuss basis expansions in some detail in
Chapter 5.



Typically these models are fit by minimizing a loss function averaged
over the training data, such as the squared-error or a likelihood-based loss
function,

{,Bm,»ym}M Z L (yz, Z ,me(a:z,’ym)) (10.4)

Algorithm 10.2 Forward Stagewise Additive Modeling.
1. Initialize fo(z) = 0.

2. Form=1to M:

(a) Compute
N
(«Bm, 'Ym) - argrgng L(yia fm—l(xi) + ,Bb(.’l,',,,, 7))
"=l

(b) Set fin(z) = fim—1(z) + Bmb(z; Ym)-




Boosting for regression

Ly, f(z)) = (y — f(x))?,

one has

L(yza fm—l(:ri) + /Bb(mz’}/)) — (yz - fm—l(mz') - 6b($t7))2
— (Ti‘m — 5b($2~ 7))2’ (107)

where 7im = yi — fm—1(z;) is simply the residual of the current model



AdaBoost with exponential loss

We now show that AdaBoost.M1 (Algorithm 10.1) is equivalent to forward
stagewise additive modeling (Algorithm 10.2) using the loss function

L(y, f(z)) = exp(—y f(z)). (10.8)

A i

For AdaBoost the basis functions are the individual classifiers G,,(z) €
{—1,1}. Using the exponential loss function, one must solve

(Bm,Gm) = arg I[glgl Z exp[—yi(fm—-1(zi) + BG(z:))]

for the classifier G,, and corresponding coefficient [3,, to be added at each
step. This can be expressed as

N

(B, Gm) = argmain ™ exp(—Fy: G(s)) (10.9)
=1

(

7

with w\™ = exp(—y; fm—1(zi)). Since each w!™ depends neither on f3



Why does boosting work?

» AdaBoost can be understood as a procedure for greedily minimizing
the exponential loss over T rounds:

U(yi, h(x;)) = exp(—yih(x;))  where h(x;) = Zatht(xi)

- Why?

“Prediction games and arcing classifiers” [Leo Breiman, 1999]
https://www.stat.berkeley.edu/~breiman/games.pdf
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Interpretation of Adaboost

* Choosing the first classifier

(o, hy1) = arg minZZ(yi, ah(x;)) = arg minZexp(—yi - ah(x;))

ah iy oh g

* Update atround t
t—1
hi_1(x) = ZOzTﬁT(X)
T=1

(g, hy) = arg minZE(yi, hi—1(x) + ah(x;))

wh =1

— arg minZeXp(—yi ' (ilt—1<X> + ah(x;)))

ah =1



Interpretation of Adaboost

(v, he) = argmin Y ~exp(—y; - (he—1(x;) + ah(x;)))

osh g

m
= argmin ) _ exp(—yihe—1(xi)) exp(—yi - @h(x;))
a,h T4 ~ ~~ -
RE

* Correcting the label for misclassified points
- Giving those points higher weights when training classifier in future iterations

* We will solve h and a separately



Solving for h
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Solving for a

* Now solve for

A -
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AdaBoost weight update

 Putting things together,

. 1 1 —err;
h; = arg min w, 1[h(x;) # yi] o = — In t
h Zzn | W (t) Z 2 err;,

\ . J/
~

errﬁt

* Therefore, weights for next round are

Wi = exp(—y; (he—1 (%) + ashy(x))
— gxp(_yz’ht—l(xz’)Z’ eXp(—Oétyz'ilt(Xz'))

N

wl®




Why do we care about exponential loss?

* Fisher consistent loss

It is easy to show (Friedrhan et ai., 20605 that

: N 1 Pi(Y=:1]%)
*(g) = E Yiz)y = 21
f(@) = argmin By (7)) = 3108 5y — 1y

(10.16)



Gradient boosting

* Consider a generic loss function
- E.g. squared loss, exponential loss

* Given current predictor h;_1(x) , we aim to find new predictor h(x) so
that the sum h;_;(x) + h(x) pushes the loss towards its minimum as
quickly as possible

* Gradient boosting: choose h in the direction of the negative
gradient of the loss



Gradient boosting

Gicadiod Boosting

A
v

Stact wtA an mitial  wodel 29, '\h), UQ:;,Li Yi

 Fit a model to the negative gradients

, for b=1,2, -

» XGBoost is a python package for “extreme’

. . colemlate nagodine gradiewts
gradient boosting

-q(x) = = dL(ys, . (x))
BlanxD

§it & wodad h, (eg. tree) to negacive
Grodiouds - - argmin 7 2 L(-90)n)

- Folk wisdom: knowing logistic regression and
XGBoost gets you 95% of the way to a winning
Kaggle submission for most competitions

- State-of-the-art prediction performance e 0O = 1,00 + 8.0,

= Won Netflix Challenge whas Bis o shep s parauckec
= Won numerous KDD Cups we find  compitationally Fo miniwim s Loss.

» |ndustry standard ;e C
i bu & b » ToP

Willett & Chen (2020). “CMSC 35400: Machine Learning”



https://voices.uchicago.edu/machinelearning/stats37710-cmsc35400-s20/
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