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Clustering

It is an unsupervised learning procedure (i.e., applies to data without ground truth labels)

(we
~y * /’AL
vy
I’F’ Olpster &
rf

» ”

5 x »

L




K-means algorithm

* Input {x1, X2, xn} in Rd
* Input K: number of clusters

* Expected output: K centers {c_i}, and K clusters {C_i}

* Question: given centers, how would you assign clusters?

* Question: given clusters, how would you determine centers?



1. Arbitrarily choose an initial k£ centers C = {c1,c2, - ,ck}-

2. For each i € {1,...,k}, set the cluster C; to be the set of points in X’ that are closer to ¢;
than they are to c; for all j # 1.

3. For each i € {1,...,k}, set ¢; to be the center of mass of all points in C;: ¢; = |71| > zec, T-
4. Repeat Steps 2 and 3 until C no longer changes.

It is standard practice to choose the initial centers uniformly at random from X'. For Step 2, ties
may be broken arbitrarily, as long as the method is consistent.



What is K-means doing?

For the k-means problem, we are given an integer k and a set of n data points X C R%. We
wish to choose k centers C so as to minimize the potential function,
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* K-means can be viewed as an alternating minimization algorithm to
solve this loss function



Drawback of original k-means

* Finding best clusters is NP-hard

* No theoretical guarantee for k-means

e Fix: k-means++



We propose a specific way of choosing centers for the k-means algorithm. In particular, let D(x)
denote the shortest distance from a data point to the closest center we have already chosen. Then,
we define the following algorithm, which we call k-means++.

la. Take one center cq, chosen uniformly at random from X.
D(z)?
D(z)?"

1b. Take a new center c;, choosing r € X with probability 5=

zEX

lc. Repeat Step 1b. until we have taken k centers altogether.
2-4. Proceed as with the standard k-means algorithm.

We call the weighting used in Step 1b simply “D? weighting”.



Log(K) competitive ratio

Theorem 3.1. If C is constructed with k-means++, then the corresponding potential function ¢
satisfies, E|¢] < 8(Ink + 2)popT-



Problems with k-means

Does not allow overlapped clusters

We need a probabilistic view on this



Gaussian mixture model
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e Definition: Gaussian mixture
- Convex-combination of Gaussian d|5tr|but|ons

P(x|0)=P(x|pu2w)= sz (x; i, 2

where w; > 0 and sz—l.



Mixture modeling

* Model each cluster j € {1,...,k} as a probability distribution

P(x | 0;)
* Assumedata D = {xq,...,x,} issampled i.i.d. with likelihood
n k
P(D[6)=]]> wiP(x|6;)
i=1j=1

* Choose parameters to minimize negative log likelihood

n k
L(D,@) — —ZlongjP(Xi | (93)
1=1 J=1



Fitting a mixture model

(1,2, W) = argmin — Y log P(x; | p, 5, w)
=1 0.5¢

= argmm—Zlong] (%45 5, 25)




MLE for Gaussian mixture model (GMM)

L(p1:k, Z1:ks W1ik) = — Z log Z wiN (x5 pj, )

* Non-convex
- Gradient descent?

» Constrained optimization on weights and covariance matrices
- weights mustsumto 1
- covariance matrices must remain symmetric positive definite

 Gradient-based approach not well suited for this problem



GMMs vs Gaussian Bayes classifiers

* Let z be clusterindex, GMM: P(z,x) = w, N (x; >, 2,)

* [n contrast to GBCs, in GMMs the (label) variable z is unobserved

Fitting a GMM = Training a GBC without labels

Clustering = latent variable modeling

* If we knew the labels z=y (i.e. GBC) > compute MLE in closed form!



Responsibility of cluster z for x

e Given model b
P(z]0),P(x|z0)

0.5¢

* For each x, compute posterior distribution
over cluster membership:
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MLE for Gaussian mixture

k
i j=1
“Itholds that 1, = = 3" (x)
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[Cf. Bishop Eq 9.16]

* Equations are coupled -- Difficult to solve jointly



Expectation-Maximization (EM) for GMMs

* Initialize parameters w!%), ,\%) =%

* While not converged:
- E-step: Calculate cluster membership weights for each point
s Pl | =, £07)

S weP(xi |y 2 )

%@ (xi) <

- M-step: Fit clusters to weighted data points (closed-form)
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The general EM algorithm

* EM algorithm is equivalent to the following procedure:

- E-step: Calculate the Expected complete-data log likelihood (= function of 0)
Q(ev e(t—l)) — EZl;n [log P(Xlzna AR ‘ H) ‘ X1:ns e(t_l)}

- M-step: Maximize

9! = arg max Q(0; 01~ 1)
Z



EM objective function (for GMMs)

Q(ea H(t_l)) — ]EZl;n [log P(Xlzna Zl:n ‘ (9) ‘ Xl:nae(t_lq

1Ld. Ez Zlog P(x;,Z; | 0) | Xlzn,ﬁ(tl)}

| i=1
— Ez, _log P(x;,Z; | 0) | Xiye(t_l)}
1=1 i
n k
=YY P(Zi= = %6 )log Plxi, Z; = = | 0
i=1 2=1 ~” o

Y=z (Xz) sz(Xﬁ/JJzaZz)

k
Z (x;)log P(x;,2; | 0)



EM algorithm: E-step and M-step

* Objective Q(8;6" 1)) Z Z Ve (Xi) log P(x,2: 1 0)  72(xi) = P(z | x;,607Y)

1=1 z;,=1

- E-step: compute 7. (X:) (expected sufficient statistics)
- M-step: compute 1) = argmax Q(9;0~) (MLE)
0

* Recall MLE in Gaussian Bayes classifiers:

0 = arg max log P(x;,2; | 0
31 ; g P(xi,z | 0)

* M-step is equivalent to training a GBC with weighted data



Convergence of EM algorithm?

* EM Algorithm monotonically increases the (log) likelihood

log P(x1:, | 07) > log P(x1., | 017 1)
(proof not discussed here)

* Can we claim that EM will converge?
- Notin the degenerate case when log likelihood is unbounded!

* Quality of solution highly depends on initialization
- Common strategy: Rerun algorithm multiple times, and use the solution with
largest likelihood



Use cases of mixture models

* Clustering/ unsupervised learning

* Can be used as part of more complex

statistical models, e.g., for classification 0.5
- or more general probabilistic models

* Can output likelihood P(x) of a point x, 0 05 I
which is useful for anomaly/outlier detection



GMMs for density estimation

* We may be interested in fitting a Gaussian Mixture Model not for
clustering but for density estimation

* Generative modeling of P(Y,X)
- Model P(X) as Gaussian mixture
- Model P(Y | X) using logistic regression, neural network, etc.
- Combines the advantage of accurate predictions/robustness from
discriminative model, with the ability to detect outliers!
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