Homework 1

Due date: 11:59pm on Oct. 21st

You are allowed to drop 1 subproblem without penalty. But you cannot drop problems on simulation.

1. Weyl's inequality (20 points)

a. (10 points) Let \boldsymbol{A} be an $n \times n$ real symmetric matrix, with eigenvalues $\lambda_{1}(\boldsymbol{A}) \geq \lambda_{2}(\boldsymbol{A}) \geq \cdots \geq \lambda_{n}(\boldsymbol{A})$. Then for each $1 \leq i \leq n$, prove the following variational representation of eigenvalues

$$
\lambda_{i}(\boldsymbol{A})=\sup _{V: \operatorname{dim}(V)=i} \inf _{\boldsymbol{v} \in V:\|\boldsymbol{v}\|_{2}=1} \boldsymbol{v}^{\top} \boldsymbol{A} \boldsymbol{v}
$$

In the above notation, V is a subspace in \mathbb{R}^{n}, and $\operatorname{dim}(V)=i$ means V is an i-dimensional subspace.
b. (10 points) Prove that: if \boldsymbol{A} and \boldsymbol{B} are both real and symmetric matrices, then

$$
\left|\lambda_{i}(\boldsymbol{A})-\lambda_{i}(\boldsymbol{B})\right| \leq\|\boldsymbol{A}-\boldsymbol{B}\|, \quad \text { for all } 1 \leq i \leq n
$$

where $\|\cdot\|$ denotes the spectral norm.
2. Distance metrics for subspaces (20 points) Consider two orthonormal matrices $\boldsymbol{U}, \boldsymbol{U}^{\star} \in \mathbb{R}^{n \times r}$, satisfying $\boldsymbol{U}^{\top} \boldsymbol{U}=\boldsymbol{U}^{\star \top} \boldsymbol{U}^{\star}=\boldsymbol{I}_{r}$ with $r<n$. We have discussed extensively the distance using projection matrices

$$
\left\|\boldsymbol{U} \boldsymbol{U}^{\top}-\boldsymbol{U}^{\star} \boldsymbol{U}^{\star \top}\right\|, \quad \text { and } \quad\left\|\boldsymbol{U} \boldsymbol{U}^{\top}-\boldsymbol{U}^{\star} \boldsymbol{U}^{\star \top}\right\|_{\mathrm{F}}
$$

Also, our default choice of distance is the one using optimal rotation matrix:

$$
\min _{\boldsymbol{R} \in \mathcal{O}^{r \times r}}\left\|\boldsymbol{U} \boldsymbol{R}-\boldsymbol{U}^{\star}\right\|, \quad \text { and } \quad \min _{\boldsymbol{R} \in \mathcal{O}^{r \times r}}\left\|\boldsymbol{U} \boldsymbol{R}-\boldsymbol{U}^{\star}\right\|_{\mathrm{F}}
$$

Here $\mathbb{O}^{r \times r}:=\left\{\boldsymbol{R} \in \mathbb{R}^{r \times r} \mid \boldsymbol{R} \boldsymbol{R}^{\top}=\boldsymbol{R}^{\top} \boldsymbol{R}=\boldsymbol{I}_{r}\right\}$ is the set of all $r \times r$ orthonormal matrices.
a. (10 points) Show that

$$
\left\|\boldsymbol{U} \boldsymbol{U}^{\top}-\boldsymbol{U}^{\star} \boldsymbol{U}^{\star \top}\right\| \leq \min _{\boldsymbol{R} \in \mathcal{O}^{r \times r}}\left\|\boldsymbol{U} \boldsymbol{R}-\boldsymbol{U}^{\star}\right\| \leq \sqrt{2}\left\|\boldsymbol{U} \boldsymbol{U}^{\top}-\boldsymbol{U}^{\star} \boldsymbol{U}^{\star \top}\right\|
$$

b. (10 points) Show that

$$
\frac{1}{\sqrt{2}}\left\|\boldsymbol{U} \boldsymbol{U}^{\top}-\boldsymbol{U}^{\star} \boldsymbol{U}^{\star \top}\right\|_{\mathrm{F}} \leq \min _{\boldsymbol{R} \in \mathcal{O}^{r \times r}}\left\|\boldsymbol{U} \boldsymbol{R}-\boldsymbol{U}^{\star}\right\|_{\mathrm{F}} \leq\left\|\boldsymbol{U} \boldsymbol{U}^{\top}-\boldsymbol{U}^{\star} \boldsymbol{U}^{\star \top}\right\|_{\mathrm{F}}
$$

3. Variant of Wedin's theorem (10 points) Consider the setting and notation used in class. Wedin's $\sin \boldsymbol{\Theta}$ theorem tells us that if $\|\boldsymbol{E}\|<\sigma_{r}^{\star}-\sigma_{r+1}^{\star}$, then there exist two orthonormal matrices $\boldsymbol{R}_{\boldsymbol{U}}, \boldsymbol{R}_{\boldsymbol{V}} \in \mathbb{R}^{r \times r}$ such that

$$
\left.\max \left\{\left\|\boldsymbol{U} \boldsymbol{R}_{\boldsymbol{U}}-\boldsymbol{U}^{\star}\right\|_{\mathrm{F}},\left\|\boldsymbol{V} \boldsymbol{R}_{\boldsymbol{V}}-\boldsymbol{V}^{\star}\right\|_{\mathrm{F}}\right)\right\} \leq \frac{\sqrt{2} \max \left\{\left\|\boldsymbol{E}^{\top} \boldsymbol{U}^{\star}\right\|_{\mathrm{F}},\left\|\boldsymbol{E} \boldsymbol{V}^{\star}\right\|_{\mathrm{F}}\right\}}{\sigma_{r}^{\star}-\sigma_{r+1}^{\star}-\|\boldsymbol{E}\|}
$$

However, in some cases, we hope for a single rotation matrix that could align both $\left(\boldsymbol{U}, \boldsymbol{U}^{\star}\right)$ and $\left(\boldsymbol{V}, \boldsymbol{V}^{\star}\right)$. It turns out that this is achievable. Show that if $\|\boldsymbol{E}\|<\sigma_{r}^{\star}-\sigma_{r+1}^{\star}$, there exists a single orthonormal matrix $\boldsymbol{R} \in \mathcal{O}^{r \times r}$ such that

$$
\left(\left\|\boldsymbol{U} \boldsymbol{R}-\boldsymbol{U}^{\star}\right\|_{\mathrm{F}}^{2}+\left\|\boldsymbol{V} \boldsymbol{R}-\boldsymbol{V}^{\star}\right\|_{\mathrm{F}}^{2}\right)^{1 / 2} \leq \frac{\sqrt{2}\left(\left\|\boldsymbol{E}^{\top} \boldsymbol{U}^{\star}\right\|_{\mathrm{F}}^{2}+\left\|\boldsymbol{E} \boldsymbol{V}^{\star}\right\|_{\mathrm{F}}^{2}\right)^{1 / 2}}{\sigma_{r}^{\star}-\sigma_{r+1}^{\star}-\|\boldsymbol{E}\|}
$$

You are allowed to invoke the general Davis-Kahan $\sin \Theta$ theorem given in class.
4. Quadratic systems of equations (10 points) Suppose that our goal is to estimate an unknown vector $\boldsymbol{x}^{\star} \in \mathbb{R}^{n}$ (obeying $\left\|\boldsymbol{x}^{\star}\right\|_{2}=1$) based on m i.i.d. samples of the form

$$
y_{i}=\left(\boldsymbol{a}_{i}^{\top} \boldsymbol{x}^{\star}\right)^{2}, \quad i=1, \ldots, m
$$

where $\boldsymbol{a}_{i} \in \mathbb{R}^{n}$ are independent vectors (known a priori) obeying $\boldsymbol{a}_{i} \sim \mathcal{N}\left(\mathbf{0}, \boldsymbol{I}_{n}\right)$.
Suggest a spectral method for estimating \boldsymbol{x}^{\star} that is consistent with either \boldsymbol{x}^{\star} or $-\boldsymbol{x}^{\star}$ in the limit of infinite data, i.e., as m goes to infinity.

5. Matrix completion (20 points) Suppose that the ground-truth matrix is given by

$$
\boldsymbol{M}^{\star}=\boldsymbol{u}^{\star} \boldsymbol{v}^{\star \top} \in \mathbb{R}^{n \times n}
$$

where $\boldsymbol{u}^{\star}=\tilde{\boldsymbol{u}} /\|\tilde{\boldsymbol{u}}\|_{2}$ and $\boldsymbol{v}^{\star}=\tilde{\boldsymbol{v}} /\|\tilde{\boldsymbol{v}}\|_{2}$, with $\tilde{\boldsymbol{u}}, \tilde{\boldsymbol{v}} \sim \mathcal{N}\left(\mathbf{0}, \boldsymbol{I}_{n}\right)$ generated independently. Each entry of $\boldsymbol{M}^{\star}=\left[M_{i, j}^{\star}\right]_{1 \leq i, j \leq n}$ is observed independently with probability p. In the lecture, we have constructed a $\operatorname{matrix} \boldsymbol{M}=\left[M_{i, j}\right]_{1 \leq i, j \leq n}$, where

$$
M_{i, j}= \begin{cases}\frac{1}{p} M_{i, j}^{\star}, & \text { if } M_{i, j}^{\star} \text { is observed; } \\ 0, & \text { else }\end{cases}
$$

We have shown in class that with high probability, the leading left singular vector \boldsymbol{u} of \boldsymbol{M} is a reliable estimate of \boldsymbol{u}^{\star}, provided that $p \gg \frac{\log ^{3} n}{n}$.

Now, consider a new matrix $\boldsymbol{M}^{(1)}=\left[M_{i, j}^{(1)}\right]_{1 \leq i, j \leq n}$ obtained by zeroing out the 1 st column and 1 st row of \boldsymbol{M}. More precisely, for any $1 \leq i, j \leq n$,

$$
M_{i, j}^{(1)}= \begin{cases}M_{i, j}, & \text { if } i \neq 1 \text { and } j \neq 1 \\ 0, & \text { else }\end{cases}
$$

Let $\boldsymbol{u}^{(1)}$ (resp. $\left.\boldsymbol{v}^{(1)}\right)$ be the leading left (resp. right) singular vector of $\boldsymbol{M}^{(1)}$.
a. (10 points) Recall that Wedin's $\sin \boldsymbol{\Theta}$ Theorem states that: for any two matrices \boldsymbol{A} and \boldsymbol{B}, their leading left singular vectors (denoted by \boldsymbol{u}_{A} and \boldsymbol{u}_{B} respectively) satisfy

$$
\operatorname{dist}\left(\boldsymbol{u}_{A}, \boldsymbol{u}_{B}\right) \leq \frac{\|\boldsymbol{A}-\boldsymbol{B}\|}{\sigma_{1}(\boldsymbol{A})-\sigma_{2}(\boldsymbol{A})-\|\boldsymbol{A}-\boldsymbol{B}\|}
$$

Use it to derive an upper bound on $\operatorname{dist}\left(\boldsymbol{u}^{(1)}, \boldsymbol{u}\right)$ in terms of n and p.
b.(10 points) Recall that a more refined version of Wedin's $\sin \boldsymbol{\Theta}$ Theorem states that: for any two matrices \boldsymbol{A} and \boldsymbol{B}, their leading left singular vectors (denoted by \boldsymbol{u}_{A} and \boldsymbol{u}_{B} respectively) satisfy

$$
\operatorname{dist}\left(\boldsymbol{u}_{A}, \boldsymbol{u}_{B}\right) \leq \frac{\max \left\{\left\|(\boldsymbol{A}-\boldsymbol{B}) \boldsymbol{v}_{A}\right\|,\left\|(\boldsymbol{A}-\boldsymbol{B})^{\top} \boldsymbol{u}_{A}\right\|\right\}}{\sigma_{1}(\boldsymbol{A})-\sigma_{2}(\boldsymbol{A})-\|\boldsymbol{A}-\boldsymbol{B}\|}
$$

where \boldsymbol{v}_{A} is the leading right singular vector of \boldsymbol{A}. Can you use this refined version to derive a sharper upper bound on $\operatorname{dist}\left(\boldsymbol{u}^{(1)}, \boldsymbol{u}\right)$? Here, you can assume without proof that $\|\boldsymbol{u}\|_{\infty},\left\|\boldsymbol{u}^{(1)}\right\|_{\infty},\|\boldsymbol{v}\|_{\infty},\left\|\boldsymbol{v}^{(1)}\right\|_{\infty} \lesssim \sqrt{\frac{\log n}{n}}$ with high probability.
6. Community detection experiments (20 points) Consider the SBM model discussed in class. Fix the number n of nodes in a graph to be 100 . Set $p=\frac{1+\varepsilon}{2}$ and $q=\frac{1-\varepsilon}{2}$ for some quantity $\varepsilon \in[0,1 / 2]$. Generate a random graph and then use the spectral method to cluster the nodes. Please plot the mis-clustering rate vs. the probability gap ε. At the minimum, you should take 50 different values of ε (with linear spacing) in $[0,1 / 2]$. For each value of ε, you need to run the experiment with at least 200 Monte-Carlo trials to calculate the average mis-clustering rate across trials.

