STAT 37797: Mathematics of Data Science

Autumn 2021

Homework 1

Due date: 11:59pm on Oct. 21st

You are allowed to drop 1 subproblem without penalty. But you cannot drop problems on simulation.

1. Weyl's inequality (20 points)

a.(10 points) Let A be an $n \times n$ real symmetric matrix, with eigenvalues $\lambda_1(A) \ge \lambda_2(A) \ge \cdots \ge \lambda_n(A)$. Then for each $1 \le i \le n$, prove the following variational representation of eigenvalues

$$\lambda_i(\boldsymbol{A}) = \sup_{V:\dim(V)=i} \inf_{\boldsymbol{v}\in V:\|\boldsymbol{v}\|_2=1} \boldsymbol{v}^\top \boldsymbol{A} \boldsymbol{v}.$$

In the above notation, V is a subspace in \mathbb{R}^n , and $\dim(V) = i$ means V is an *i*-dimensional subspace.

b.(10 points) Prove that: if **A** and **B** are both real and symmetric matrices, then

$$|\lambda_i(\boldsymbol{A}) - \lambda_i(\boldsymbol{B})| \le \|\boldsymbol{A} - \boldsymbol{B}\|, \quad \text{for all } 1 \le i \le n,$$

where $\|\cdot\|$ denotes the spectral norm.

2. Distance metrics for subspaces (20 points) Consider two orthonormal matrices $U, U^* \in \mathbb{R}^{n \times r}$, satisfying $U^{\top}U = U^{*\top}U^* = I_r$ with r < n. We have discussed extensively the distance using projection matrices

$$\|\boldsymbol{U}\boldsymbol{U}^{\top}-\boldsymbol{U}^{\star}\boldsymbol{U}^{\star\top}\|, \text{ and } \|\boldsymbol{U}\boldsymbol{U}^{\top}-\boldsymbol{U}^{\star}\boldsymbol{U}^{\star\top}\|_{\mathrm{F}}.$$

Also, our default choice of distance is the one using optimal rotation matrix:

$$\min_{\boldsymbol{R}\in\mathcal{O}^{r\times r}} \left\|\boldsymbol{U}\boldsymbol{R}-\boldsymbol{U}^{\star}\right\|, \quad \text{and} \quad \min_{\boldsymbol{R}\in\mathcal{O}^{r\times r}} \left\|\boldsymbol{U}\boldsymbol{R}-\boldsymbol{U}^{\star}\right\|_{\mathrm{F}}.$$

Here $\mathbb{O}^{r \times r} := \{ \boldsymbol{R} \in \mathbb{R}^{r \times r} \mid \boldsymbol{R} \boldsymbol{R}^{\top} = \boldsymbol{R}^{\top} \boldsymbol{R} = \boldsymbol{I}_r \}$ is the set of all $r \times r$ orthonormal matrices.

a.(10 points) Show that

$$\|\boldsymbol{U}\boldsymbol{U}^{\top} - \boldsymbol{U}^{\star}\boldsymbol{U}^{\star\top}\| \leq \min_{\boldsymbol{R} \in \mathcal{O}^{r \times r}} \|\boldsymbol{U}\boldsymbol{R} - \boldsymbol{U}^{\star}\| \leq \sqrt{2}\|\boldsymbol{U}\boldsymbol{U}^{\top} - \boldsymbol{U}^{\star}\boldsymbol{U}^{\star\top}\|.$$

b.(10 points) Show that

$$\frac{1}{\sqrt{2}} \|\boldsymbol{U}\boldsymbol{U}^{\top} - \boldsymbol{U}^{\star}\boldsymbol{U}^{\star\top}\|_{\mathrm{F}} \leq \min_{\boldsymbol{R} \in \mathcal{O}^{r \times r}} \|\boldsymbol{U}\boldsymbol{R} - \boldsymbol{U}^{\star}\|_{\mathrm{F}} \leq \|\boldsymbol{U}\boldsymbol{U}^{\top} - \boldsymbol{U}^{\star}\boldsymbol{U}^{\star\top}\|_{\mathrm{F}}$$

3. Variant of Wedin's theorem (10 points) Consider the setting and notation used in class. Wedin's $\sin \Theta$ theorem tells us that if $||E|| < \sigma_r^* - \sigma_{r+1}^*$, then there exist two orthonormal matrices $R_U, R_V \in \mathbb{R}^{r \times r}$ such that

$$\max\left\{\left\|\boldsymbol{U}\boldsymbol{R}_{\boldsymbol{U}}-\boldsymbol{U}^{\star}\right\|_{\mathrm{F}},\left\|\boldsymbol{V}\boldsymbol{R}_{\boldsymbol{V}}-\boldsymbol{V}^{\star}\right\|_{\mathrm{F}}\right\}\right\} \leq \frac{\sqrt{2}\max\left\{\left\|\boldsymbol{E}^{+}\boldsymbol{U}^{\star}\right\|_{\mathrm{F}},\left\|\boldsymbol{E}\boldsymbol{V}^{\star}\right\|_{\mathrm{F}}\right\}}{\sigma_{r}^{\star}-\sigma_{r+1}^{\star}-\left\|\boldsymbol{E}\right\|}$$

However, in some cases, we hope for a single rotation matrix that could align both (U, U^*) and (V, V^*) . It turns out that this is achievable. Show that if $||E|| < \sigma_r^* - \sigma_{r+1}^*$, there exists a single orthonormal matrix $R \in \mathcal{O}^{r \times r}$ such that

$$ig(\left\|oldsymbol{U}oldsymbol{R}-oldsymbol{U}^{\star}
ight\|_{\mathrm{F}}^{2}+\left\|oldsymbol{V}oldsymbol{R}-oldsymbol{V}^{\star}
ight\|_{\mathrm{F}}^{2}ig)^{1/2}\leqrac{\sqrt{2}ig(\left\|oldsymbol{E}^{ op}oldsymbol{U}^{\star}
ight\|_{\mathrm{F}}^{2}+\left\|oldsymbol{E}oldsymbol{V}^{\star}
ight\|_{\mathrm{F}}^{2}ig)^{1/2}}{\sigma_{r}^{\star}-\sigma_{r+1}^{\star}-\left\|oldsymbol{E}
ight\|}.$$

You are allowed to invoke the general Davis-Kahan $\sin \Theta$ theorem given in class.

4. Quadratic systems of equations (10 points) Suppose that our goal is to estimate an unknown vector $x^* \in \mathbb{R}^n$ (obeying $||x^*||_2 = 1$) based on m i.i.d. samples of the form

$$y_i = (\boldsymbol{a}_i^\top \boldsymbol{x}^\star)^2, \qquad i = 1, \dots, m_i$$

where $a_i \in \mathbb{R}^n$ are independent vectors (known *a priori*) obeying $a_i \sim \mathcal{N}(\mathbf{0}, I_n)$.

Suggest a spectral method for estimating x^* that is consistent with either x^* or $-x^*$ in the limit of infinite data, i.e., as m goes to infinity.

5. Matrix completion (20 points) Suppose that the ground-truth matrix is given by

$$M^{\star} = u^{\star}v^{\star op} \in \mathbb{R}^{n imes n},$$

where $\boldsymbol{u}^{\star} = \tilde{\boldsymbol{u}}/\|\tilde{\boldsymbol{u}}\|_2$ and $\boldsymbol{v}^{\star} = \tilde{\boldsymbol{v}}/\|\tilde{\boldsymbol{v}}\|_2$, with $\tilde{\boldsymbol{u}}, \tilde{\boldsymbol{v}} \sim \mathcal{N}(\boldsymbol{0}, \boldsymbol{I}_n)$ generated independently. Each entry of $\boldsymbol{M}^{\star} = [M_{i,j}^{\star}]_{1 \leq i,j \leq n}$ is observed independently with probability p. In the lecture, we have constructed a matrix $\boldsymbol{M} = [M_{i,j}]_{1 \leq i,j \leq n}$, where

$$M_{i,j} = \begin{cases} \frac{1}{p} M_{i,j}^{\star}, & \text{if } M_{i,j}^{\star} \text{ is observed}; \\ 0, & \text{else.} \end{cases}$$

We have shown in class that with high probability, the leading left singular vector \boldsymbol{u} of \boldsymbol{M} is a reliable estimate of \boldsymbol{u}^{\star} , provided that $p \gg \frac{\log^3 n}{n}$.

Now, consider a new matrix $M^{(1)} = [M^{(1)}_{i,j}]_{1 \le i,j \le n}$ obtained by zeroing out the 1st column and 1st row of M. More precisely, for any $1 \le i, j \le n$,

$$M_{i,j}^{(1)} = \begin{cases} M_{i,j}, & \text{if } i \neq 1 \text{ and } j \neq 1; \\ 0, & \text{else.} \end{cases}$$

Let $\boldsymbol{u}^{(1)}$ (resp. $\boldsymbol{v}^{(1)}$) be the leading left (resp. right) singular vector of $\boldsymbol{M}^{(1)}$.

a.(10 points) Recall that Wedin's $\sin \Theta$ Theorem states that: for any two matrices A and B, their leading left singular vectors (denoted by u_A and u_B respectively) satisfy

$$\mathsf{dist}(oldsymbol{u}_A,oldsymbol{u}_B) \leq rac{ig\|oldsymbol{A} - oldsymbol{B}ig\|}{\sigma_1ig(oldsymbol{A}ig) - \sigma_2(oldsymbol{A}) - ig\|oldsymbol{A} - oldsymbol{B}ig\|}.$$

Use it to derive an upper bound on $dist(u^{(1)}, u)$ in terms of n and p.

b.(10 points) Recall that a more refined version of Wedin's $\sin \Theta$ Theorem states that: for any two matrices **A** and **B**, their leading left singular vectors (denoted by u_A and u_B respectively) satisfy

$$\mathsf{dist}(\boldsymbol{u}_A, \boldsymbol{u}_B) \leq \frac{\max\left\{ \left\| (\boldsymbol{A} - \boldsymbol{B}) \boldsymbol{v}_A \right\|, \left\| (\boldsymbol{A} - \boldsymbol{B})^\top \boldsymbol{u}_A \right\| \right\}}{\sigma_1(\boldsymbol{A}) - \sigma_2(\boldsymbol{A}) - \|\boldsymbol{A} - \boldsymbol{B}\|}$$

where \boldsymbol{v}_A is the leading right singular vector of \boldsymbol{A} . Can you use this refined version to derive a sharper upper bound on $\operatorname{dist}(\boldsymbol{u}^{(1)}, \boldsymbol{u})$? Here, you can assume without proof that $\|\boldsymbol{u}\|_{\infty}, \|\boldsymbol{u}^{(1)}\|_{\infty}, \|\boldsymbol{v}\|_{\infty}, \|\boldsymbol{v}^{(1)}\|_{\infty} \lesssim \sqrt{\frac{\log n}{n}}$ with high probability.

6. Community detection experiments (20 points) Consider the SBM model discussed in class. Fix the

number n of nodes in a graph to be 100. Set $p = \frac{1+\varepsilon}{2}$ and $q = \frac{1-\varepsilon}{2}$ for some quantity $\varepsilon \in [0, 1/2]$. Generate a random graph and then use the spectral method to cluster the nodes. Please plot the mis-clustering rate vs. the probability gap ε . At the minimum, you should take 50 different values of ε (with linear spacing) in [0, 1/2]. For each value of ε , you need to run the experiment with at least 200 Monte-Carlo trials to calculate the average mis-clustering rate across trials.