
STAT 37797: Mathematics of Data Science Autumn 2021

Homework 1

Due date: 11:59pm on Oct. 21st

You are allowed to drop 1 subproblem without penalty. But you cannot drop problems on simulation.

1. Weyl’s inequality (20 points)

a.(10 points) Let A be an n×n real symmetric matrix, with eigenvalues λ1(A) ≥ λ2(A) ≥ · · · ≥ λn(A).
Then for each 1 ≤ i ≤ n, prove the following variational representation of eigenvalues

λi(A) = sup
V :dim(V )=i

inf
v∈V :‖v‖2=1

v>Av.

In the above notation, V is a subspace in Rn, and dim(V ) = i means V is an i-dimensional subspace.

b.(10 points) Prove that: if A and B are both real and symmetric matrices, then

|λi(A)− λi(B)| ≤ ‖A−B‖, for all 1 ≤ i ≤ n,

where ‖ · ‖ denotes the spectral norm.

2. Distance metrics for subspaces (20 points) Consider two orthonormal matrices U ,U? ∈ Rn×r,

satisfying U>U = U?>U? = Ir with r < n. We have discussed extensively the distance using projection
matrices

‖UU> −U?U?>‖, and ‖UU> −U?U?>‖F.

Also, our default choice of distance is the one using optimal rotation matrix:

min
R∈Or×r

∥∥UR−U?
∥∥, and min

R∈Or×r
‖UR−U?‖F .

Here Or×r := {R ∈ Rr×r | RR> = R>R = Ir} is the set of all r × r orthonormal matrices.

a.(10 points) Show that

‖UU> −U?U?>‖ ≤ min
R∈Or×r

∥∥UR−U?
∥∥ ≤ √2‖UU> −U?U?>‖.

b.(10 points) Show that

1√
2
‖UU> −U?U?>‖F ≤ min

R∈Or×r
‖UR−U?‖F ≤ ‖UU> −U?U?>‖F.

3. Variant of Wedin’s theorem (10 points) Consider the setting and notation used in class. Wedin’s

sin Θ theorem tells us that if ‖E‖ < σ?
r − σ?

r+1, then there exist two orthonormal matrices RU ,RV ∈ Rr×r

such that

max
{
‖URU −U?‖F , ‖V RV − V ?‖F

)}
≤
√

2 max
{
‖E>U?‖F, ‖EV ?‖F

}
σ?
r − σ?

r+1 − ‖E‖
.
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However, in some cases, we hope for a single rotation matrix that could align both (U ,U?) and (V ,V ?). It
turns out that this is achievable. Show that if ‖E‖ < σ?

r − σ?
r+1, there exists a single orthonormal matrix

R ∈ Or×r such that

(
‖UR−U?‖2F + ‖V R− V ?‖2F

)1/2 ≤ √2
(
‖E>U?‖2F + ‖EV ?‖2F

)1/2
σ?
r − σ?

r+1 − ‖E‖
.

You are allowed to invoke the general Davis-Kahan sin Θ theorem given in class.

4. Quadratic systems of equations (10 points) Suppose that our goal is to estimate an unknown vector

x? ∈ Rn (obeying ‖x?‖2 = 1) based on m i.i.d. samples of the form

yi = (a>i x
?)2, i = 1, . . . ,m,

where ai ∈ Rn are independent vectors (known a priori) obeying ai ∼ N (0, In).
Suggest a spectral method for estimating x? that is consistent with either x? or −x? in the limit of

infinite data, i.e., as m goes to infinity.

5. Matrix completion (20 points) Suppose that the ground-truth matrix is given by

M? = u?v?> ∈ Rn×n,

where u? = ũ/‖ũ‖2 and v? = ṽ/‖ṽ‖2, with ũ, ṽ ∼ N (0, In) generated independently. Each entry of
M? = [M?

i,j ]1≤i,j≤n is observed independently with probability p. In the lecture, we have constructed a
matrix M = [Mi,j ]1≤i,j≤n, where

Mi,j =

{
1
pM

?
i,j , if M?

i,j is observed;

0, else.

We have shown in class that with high probability, the leading left singular vector u of M is a reliable

estimate of u?, provided that p� log3 n
n .

Now, consider a new matrix M (1) = [M
(1)
i,j ]1≤i,j≤n obtained by zeroing out the 1st column and 1st row

of M . More precisely, for any 1 ≤ i, j ≤ n,

M
(1)
i,j =

{
Mi,j , if i 6= 1 and j 6= 1;

0, else.

Let u(1) (resp. v(1)) be the leading left (resp. right) singular vector of M (1).

a.(10 points) Recall that Wedin’s sin Θ Theorem states that: for any two matrices A and B, their
leading left singular vectors (denoted by uA and uB respectively) satisfy

dist(uA,uB) ≤
∥∥A−B

∥∥
σ1
(
A
)
− σ2(A)− ‖A−B‖

.

Use it to derive an upper bound on dist(u(1),u) in terms of n and p.

b.(10 points) Recall that a more refined version of Wedin’s sin Θ Theorem states that: for any two
matrices A and B, their leading left singular vectors (denoted by uA and uB respectively) satisfy

dist(uA,uB) ≤
max

{∥∥(A−B)vA

∥∥,∥∥(A−B)>uA

∥∥}
σ1
(
A
)
− σ2(A)− ‖A−B‖
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where vA is the leading right singular vector of A. Can you use this refined version to derive a sharper upper

bound on dist(u(1),u)? Here, you can assume without proof that ‖u‖∞, ‖u(1)‖∞, ‖v‖∞, ‖v(1)‖∞ .
√

logn
n

with high probability.

6. Community detection experiments (20 points) Consider the SBM model discussed in class. Fix the

number n of nodes in a graph to be 100. Set p = 1+ε
2 and q = 1−ε

2 for some quantity ε ∈ [0, 1/2]. Generate
a random graph and then use the spectral method to cluster the nodes. Please plot the mis-clustering rate
vs. the probability gap ε. At the minimum, you should take 50 different values of ε (with linear spacing) in
[0, 1/2]. For each value of ε, you need to run the experiment with at least 200 Monte-Carlo trials to calculate
the average mis-clustering rate across trials.
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