
STAT 37797: Mathematics of Data Science Autumn 2021

Homework 2

Due date: 11:59pm on Nov. 19th

You are allowed to drop 1 subproblem without penalty. But you cannot drop problems on simulation.

1. Concentration of Gaussian random variables (20 points)

a.(5 points) Let X be a standard normal random variable. Prove that

P(|X| ≥ t) ≤ 2 exp(−t2/2).

b.(5 points) Let X1, X2, . . . , Xn be n i.i.d. standard normal random variables. Prove that with
probability at least 1−O(n−10), one has

max
1≤i≤n

|Xi| ≤ 5
√

log n.

c.(10 points) Let x ∈ Rn be a random vector where each coordinate is an independent standard normal
random variable. Using the the conclusion above, one can show that ‖x‖2 .

√
n log n with high probability.

However, this falls short in two aspects. First, the upper bound on ‖x‖2 is not tight. Second, it doesn’t
provide a high-probability lower bound of ‖x‖2. In this part, prove that for all t ∈ (0, 1), one has

P(|‖x‖22 − n| ≥ nt) ≤ 2 exp(−nt2/8).

(Hint: Laplace transform method)

2. Norm of Gaussian random matrices (40 points)

Recall that in class, we have used the bound ‖E‖ .
√
n where E ∈ Rn×n is composed of i.i.d. standard

normal random variables.

a.(10 points) Use matrix Bernstein’s inequality to show that with high probability ‖E‖ .
√
n log n.

(Hint: truncation)

As before, the bound proved in part (a) is off by a
√

log n factor. In the following, we will prove a tighter
bound. Recall the definition of ‖E‖:

‖E‖ = sup
‖v‖2=1

‖Ev‖2

Hence it suffices to show that with high probability sup‖v‖2=1 ‖Ev‖2 .
√
n.

b.(5 points) Let’s first focus on a fixed vector ‖v‖2 = 1. Prove that for any fixed v ∈ Rn, one has

P(‖Ev‖2 ≥ 10
√
n) ≤ 2 exp(−100n).

It is tempting to apply “union bound” and “obtain”

P( sup
‖v‖2=1

‖Ev‖2 ≥ 10
√
n) ≤

∑
‖v‖2=1

P(‖Ev‖2 ≥ 10
√
n).
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However this argument is ABSOLUTELY wrong as one cannot apply union bound to a uncountable set.
Therefore, to properly apply union bound, one needs to restrict attention to a finite subset of the unit sphere
in Rn that well approximates the unit sphere. This motivates the construction of the ε-net.

c.(10 points) LetNε be a subset of {v ∈ Rn : ‖v‖2 = 1} such that for any point v in {v ∈ Rn : ‖v‖2 = 1},
one can find an element u ∈ Nε such that ‖u − v‖2 ≤ ε. In particular, set Nε be such a set with smallest
cardinality. Prove that

|Nε| ≤ (1 + 2
ε )n,

where |Nε| denotes the cardinality of Nε.

d.(5 points) Fix some ε ∈ (0, 1). Prove that for any matrix A ∈ Rn×n

‖A‖ ≤ 1

1− ε
· max
v∈Nε

‖Av‖2.

This shows the usefulness of Nε in terms of approximating ‖A‖.

e.(10 points) Combine the previous steps to show that with high probability ‖E‖ .
√
n.

3. Matrix concentration in matrix completion (10 points) Consider the matrix completion problem

introduced in class where M? = U?Σ?V ?> ∈ Rn×n is a rank-r matrix. Let µ be its incoherence parameter.
Prove that with high probability

‖M −M?‖ .

√
µr log n

np
‖M?‖

as long as np ≥ Cµr log n for some sufficiently large constant C > 0.

4. Matrix completion experiments (20 points) Consider the matrix completion problem introduced

in class. Let M? = U?Σ?V ?> be the underlying groundtruth matrix. Here U?,V ? ∈ Rn×r are two
independent random orthonormal matrices. For simplicity consider Σ? = Ir. Let p be the observation
probability for each entry. Let M̂ be the spectral estimate of the matrix M?.

Fix n = 200, r = 5, and vary p from 0.2 to 1. Please report the relative Euclidean error ‖M̂−M
?‖F

‖M?‖F and

the relative entrywise error ‖M̂−M
?‖∞

‖M?‖∞ vs. the sampling probability p. Please choose at least 20 different p’s

and for each p, use at least 50 Monte-Carlo simulations.

5. Community detection experiments (30 points)

Consider the SBM model discussed in class, where p = α log n/n and q = β log n/n. Throughout this
exercise, we will use the second eigenvector of the adjacency matrix A, which does not rely on the knowledge
of either p or q.

a.(15 points) In the first part, we are going to investigate the phase transition behavior we discussed
in class. Fix n = 300. Vary β from 0 to 10, and α from 0 to 30, with increments 0.1 and 0.3 respectively.
For each α, β, run spectral method for 100 random trials and report the success rate plot. On the same plot,
please also add the curves that correspond to (

√
α−
√
β)2 = 2. You should be able to see a sharp transition

in terms of success rate around these curves.
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b.(5 points) In the second part, we will take a closer look at the entrywise behavior of û2—the second
eigenvector of the adjacency matrix A. Fix n = 5000, α = 4.5, b = 0.25. Check that based on our theory,
spectral method should succeed in exact recovery with high probability for this configuration. To verify this,
plot the histogram of the entries in

√
nû2. Are those uniformly close to ±1?

c.(10 points) In class, to prove exact recovery, we actually compare û2 with the linearization Au?
2/λ

?
2,

instead of u?
2. Here we investigate the reason underlying this. Use the same configuration as above, and

run 100 Monte-Carlo simulations. Report the boxplots for
√
n‖û2 − u?

2‖∞,
√
n‖û2 − Au?

2/λ
?
2‖∞, and

‖Au?
2/λ

?
2 − u?

2‖∞. Which one is the smallest among the three?
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