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An article in Harvard Data Science Review

4. Balance of Statistical and Computational Efficiencies

When we have limited data, the emphasis on statistical efficiency to make the
best use of the available data has naturally become an important focus of

statistics research. We do not think statistical efficiency will become

irrelevant in the big data era; often inference is made locally and the relevant
data that are available to infer around a specific subpopulation remain

limited. On the other hand, useful statistical modeling and data analysis must

take into account constraints on data storage, communication across sites,
and the quality of numerical approximations in the computation. An
‘optimally efficient’ statistical approach is far from optimal in practice if it

BRI ikt
relies on optimization of a highly nonconvex and nonsmooth objective

function, for instance. The need to work with streaming data for real-time

actions also calls for a balanced approach. This is where statisticians and
computer scientists, as well as experts from related domains (e.g., operation
research, mathematics, and subject-matter science) can work together to

address efficiency in a holistic way.

Challenges and Opportunities in Statistics and Data Science: Ten Research Areas

by Xuming He and Xihong Lin
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Key messages

e Statistical efficiency is still relevant in big data era
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Key messages

e Statistical efficiency is still relevant in big data era
— big data vs big parameters (high-dimensional statistics)
e Computational efficiency cannot be ignored
— due to limited computation/memory
e "A ... procedure is far from optimal in practice if it relies on
optimization of a highly nonconvex and nonsmooth objective function”
— hmm...nonconvexity maybe our friend
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Main theme of this course

By blending statistical and computational theory, we can extract
useful information from big data more efficiently
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Outline

e A motivating example: low-rank matrix completion
e Topics covered in this course

e Course logistics
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A motivating example:
low-rank matrix completion



Noisy low-rank matrix completion

unknown rank-r matrix @* € Rdxd
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Noisy low-rank matrix completion

unknown rank-r matrix @* € Rdxd
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Motivation 1: recommendation systems

Y Y N
N . A " I Ll see
e Ptk ? ? ?

- i Y

e Netflix challenge: Netflix provides highly incomplete ratings from
nearly 0.5 million users & 20k movies

e How to predict unseen user ratings for movies?
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In general, we cannot infer missing ratings
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Underdetermined system (more unknowns than equations)
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... unless rating matrix has some structure

Ratings

I] Users

Movies |]

low-rank approximation — a few factors explain most of data
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Motivation 2: sensor localization
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e Observe partial pairwise distances

e Goal: infer distance between every pair of nodes
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Motivation 2: sensor localization

Introduce location matrix

X = € R¥3

then distance matrix D = [D; j]1<; j<a can be written as

13
D=| : (1741 [z} [zal3] - 2X X~
deH% rank 1 rank 3

low rank

rank(D) < d — low-rank matrix completion
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Least-squares estimator

Introduction

inimi — V)2
minimize  f(©) = }_ (©i;—Yiy)

subject to rank(®) = r
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Least-squares estimator

inimi — R VAR
minimize  f(©) = }_ (©i;—Yiy)
subject to rank(®) = r

— This is also MLE when noise follows Gaussian
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Least-squares estimator

minimize f(©®) = Z (0, — Yi,j)2

G)E]RdXd

subject to rank(®) = r

Challenge:

— This is also MLE when noise follows Gaussian

nonconvexity = computational hardness
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Popular workaround: convex relaxation

convex relaxation

Relax nonconvex problems into convex ones by finding convex
surrogates

Introduction

1-14



Convex relaxation for matrix completion

Replace rank constraint by nuclear norm constraint

minimize
OcRIxd

subject to

Introduction
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Convex relaxation for matrix completion

Replace rank constraint by nuclear norm constraint

i — R VARRY
minimize  f(©) = > (i~ Yiy)
(4,5)€Q

subject to ra =7 ||O|.<t

d
— 18l =321, 0:(©)
convex relaxation (regularized version):

. . . 2
rgg]@iﬁe Z (i —Yij)" + O]
(4,7)€Q
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Convex relaxation: pros and cons
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Convex relaxation: pros and cons
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Can we solve matrix completion with lower computational cost?



Spectral methods

e Assumption: each entry is observed indep. with probability p

Introduction

1-18



Spectral methods

e Assumption: each entry is observed indep. with probability p
e Key observation: let
. 1y;,, if (i,4) is observed
Y;j _ plhdy ) )
’ 0, otherwise

A

we have E[Y] = ©*
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Spectral methods

e Assumption: each entry is observed indep. with probability p

e Key observation: let

g, = [#Yer if (0.3) is observed,
0, otherwise

A

we have E[Y] = ©*

spectral method:

use best rank-r approximation to Y as estimator of ©*
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Spectral methods

e Assumption: each entry is observed indep. with probability p

e Key observation: let

g, = [#Yer if (0.3) is observed,
0, otherwise

A

we have E[Y] = ©*

spectral method:

use best rank-r approximation to Y as estimator of ©*

— simple, but sometimes statistically inefficient
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Nonconvex optimization

Represent low-rank matrix by LR with L, R € R*"

low-rank factors
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Two-stage algorithm

Introduction

minimize f
L,ReRdxr

(LaR) = Z {(LRT)M - YM}
(4,5)€Q

2

1-20



Two-stage algorithm

minimize f(L,R)= > {(LRT)M B Y%,jr

L,RcRdxT ~
© ()€
e e spectral initialization: (L°, R?)
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Two-stage algorithm

minimize f(L,R)= > {(LRT)M B Y%’jr

L,ReRIx" ~
e (i.4)€Q

e e spectral initialization: (L°, R?)
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L' = L'~y Vi (L', R)
R = R — 0 VR /(L' R')

nonconvex estimator achieves optimal estimation error

— Ma, Wang, Chi, Chen '17
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Main theme of this course

By blending statistical and computational theory, we can extract
useful information from big data more efficiently
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Tentative topics

e Spectral methods
o Classic 5 matrix perturbation theory
o Matrix concentration inequalities
o Applications of spectral methods ({5 theory)
o f matrix perturbation theory
o Applications of spectral methods (£, theory)
e Nonconvex optimization
o Basic optimization theory
o Generic local analysis for regularized gradient descent (GD)
o Refined local analysis for vanilla GD
o Global landscape analysis
o Gradient descent with random initialization
e Convex relaxation (maybe)
o Compressed sensing and sparse recovery
o Phase transition and convex geometry
o Low-rank matrix recovery
o Robust principal component analysis

e Minimax lower bounds (maybe)
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Why you should not take this course

Introduction

1-24



Why you should not take this course

e There will be quite a few THEOREMS and PROOFS ...

Introduction

1-24



Why you should not take this course

e There will be quite a few THEOREMS and PROOFS ...

e Nonrigorous/heuristic arguments from time to time

Introduction

1-24



Why you should consider taking this course

Introduction

1-25



Why you should consider taking this course

e There will be quite a few THEOREMS and PROOFS ...

Introduction

1-25



Why you should consider taking this course

e There will be quite a few THEOREMS and PROOFS ...

o promote deeper understanding of scientific results

Introduction

1-25



Why you should consider taking this course

e There will be quite a few THEOREMS and PROOFS ...

o promote deeper understanding of scientific results

e Nonrigorous/heuristic arguments from time to time

Introduction

1-25



Why you should consider taking this course

e There will be quite a few THEOREMS and PROOFS ...

o promote deeper understanding of scientific results

e Nonrigorous/heuristic arguments from time to time

o “nonrigorous” but grounded in rigorous theory
o help develop intuition
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Prerequisites

linear algebra

probability theory

e a programming language (e.g., Matlab, Python, Julia, ..

knowledge in convex optimization

Introduction
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Textbooks

We recommend these books, but will not follow them closely

DATA SOIENGE SERIES

STATISTICAL
FOUNDATIONS OF
DATA SCIENCE

High-Dimensional High-Dimensional
Probability

Roman Vershynin
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Useful references

e Spectral Methods for Data Science: A Statistical Perspective,
Yuxin Chen, Yuejie Chi, Jianging Fan, and Cong Ma

e Nonconvex optimization meets low-rank matrix factorization: An
overview, Yuejie Chi, Yue M. Lu, and Yuxin Chen

e Convex optimization, Stephen Boyd, and Lieven Vandenberghe
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Course project

Two forms
e literature review

e original research
o You are strongly encouraged to combine it with your own research
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Course project

Two forms
e literature review

e original research
o You are strongly encouraged to combine it with your own research

Three milestones
e proposal (due Feb. 1st): up to 1 page
e in-class presentation: last week (week 9) of class

e report (due Mar. 6th): up to 4 pages with unlimited appendix
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