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Key messages

• Statistical efficiency is still relevant in big data era

— big data vs big parameters (high-dimensional statistics)
• Computational efficiency cannot be ignored

— due to limited computation/memory
• “A ... procedure is far from optimal in practice if it relies on

optimization of a highly nonconvex and nonsmooth objective function”
— hmm...nonconvexity maybe our friend
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Main theme of this course

By blending statistical and computational theory, we can extract
useful information from big data more efficiently

(large-scale) optimization (high-dimensional) statistics

(Non)-

(large-scale) optimization (high-dimensional) statistics(large-scale) optimization (high-dimensional) statistics

nonconvex optimization( )
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Outline

• A motivating example: low-rank matrix completion
• Topics covered in this course
• Course logistics
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A motivating example:
low-rank matrix completion



Noisy low-rank matrix completion

unknown rank-r matrix Θ⋆ ∈ Rd×d



✓ ? ? ? ✓ ?
? ? ✓ ✓ ? ?
✓ ? ? ✓ ? ?
? ? ✓ ? ? ✓
✓ ? ? ? ? ?
? ✓ ? ? ✓ ?
? ? ✓ ✓ ? ?


sampling set Ω

observations: Yi,j = Θ⋆
i,j + noise, (i, j) ∈ Ω

goal: estimate Θ⋆
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Motivation 1: recommendation systems

? ? ? ?

?

?

??

??

???

?

?

• Netflix challenge: Netflix provides highly incomplete ratings from
nearly 0.5 million users & 20k movies

• How to predict unseen user ratings for movies?
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In general, we cannot infer missing ratings



✓ ? ? ? ✓ ?
? ? ✓ ✓ ? ?
✓ ? ? ✓ ? ?
? ? ✓ ? ? ✓
✓ ? ? ? ? ?
? ✓ ? ? ✓ ?
? ? ✓ ✓ ? ?



? ? ? ?

?

?

??

??

???

?

?

Underdetermined system (more unknowns than equations)
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... unless rating matrix has some structure

low-rank approximation −→ a few factors explain most of data
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Motivation 2: sensor localization

• Observe partial pairwise distances
• Goal: infer distance between every pair of nodes
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Motivation 2: sensor localization
Introduce location matrix

X =


− x⊤

1 −
− x⊤

2 −

−
... −

− x⊤
d −

 ∈ Rd×3

then distance matrix D = [Di,j ]1≤i,j≤d can be written as

D =

 ∥x1∥2
2

...
∥xd∥2

2

 1⊤

︸ ︷︷ ︸
rank 1

+ 1 ·
[
∥x1∥2

2, · · · , ∥xd∥2
2

]
︸ ︷︷ ︸

rank 1

− 2XX⊤︸ ︷︷ ︸
rank 3

︸ ︷︷ ︸
low rank

rank(D) ≪ d −→ low-rank matrix completion
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Least-squares estimator

minimize
Θ∈Rd×d

f(Θ) =
∑

(i,j)∈Ω
(Θi,j − Yi,j)2

subject to rank(Θ) = r

— This is also MLE when noise follows Gaussian

Challenge: nonconvexity =⇒ computational hardness
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Popular workaround: convex relaxation

convex relaxation

Relax nonconvex problems into convex ones by finding convex
surrogates
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Convex relaxation for matrix completion

Replace rank constraint by nuclear norm constraint

minimize
Θ∈Rd×d

f(Θ) =
∑

(i,j)∈Ω
(Θi,j − Yi,j)2

subject to (((((((hhhhhhhrank(Θ) = r ∥Θ∥∗ ≤ t

— ∥Θ∥∗ =
∑d

i=1 σi(Θ)

convex relaxation (regularized version):

minimize
Θ∈Rd×d

∑
(i,j)∈Ω

(
Θi,j − Yi,j

)2 + λ∥Θ∥∗
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Convex relaxation: pros and cons

convex relaxation (regularized version):

minimize
Θ∈Rd×d

∑
(i,j)∈Ω

(
Θi,j − Yi,j

)2 + λ∥Θ∥∗

Pro: often achieve statistical optimality

Issue: expensive in computation/memory

Introduction 1-16



Convex relaxation: pros and cons

convex relaxation (regularized version):

minimize
Θ∈Rd×d

∑
(i,j)∈Ω

(
Θi,j − Yi,j

)2 + λ∥Θ∥∗

Pro: often achieve statistical optimality
Issue: expensive in computation/memory

Introduction 1-16



Can we solve matrix completion with lower computational cost?



Spectral methods

• Assumption: each entry is observed indep. with probability p

• Key observation: let

Ŷi,j =
{1

pYi,j , if (i, j) is observed,

0, otherwise

we have E[Ŷ ] = Θ⋆

spectral method:

use best rank-r approximation to Ŷ as estimator of Θ⋆

— simple, but sometimes statistically inefficient
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Nonconvex optimization

Represent low-rank matrix by LR⊤ with L,R ∈ Rd×r︸ ︷︷ ︸
low-rank factors

minimize
L,R∈Rd×r

f(L,R) =
∑

(i,j)∈Ω

[(
LR⊤)

i,j
− Yi,j

]2
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Two-stage algorithm

minimize
L,R∈Rd×r

f(L,R) =
∑

(i,j)∈Ω

[(
LR⊤)

i,j
− Yi,j

]2

• spectral initialization: (L0,R0)
— top singular vectors of Ŷ

• gradient descent: for t = 0, 1, . . .

Lt+1 = Lt − ηt ∇Lf(Lt,Rt)
Rt+1 = Rt − ηt ∇Rf(Lt,Rt)

nonconvex estimator achieves optimal estimation error

— Ma, Wang, Chi, Chen ’17
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Main theme of this course

By blending statistical and computational theory, we can extract
useful information from big data more efficiently

(large-scale) optimization (high-dimensional) statistics

(Non)-

(large-scale) optimization (high-dimensional) statistics(large-scale) optimization (high-dimensional) statistics

nonconvex optimization( )
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Tentative topics
• Spectral methods

◦ Classic ℓ2 matrix perturbation theory
◦ Matrix concentration inequalities
◦ Applications of spectral methods (ℓ2 theory)
◦ ℓ∞ matrix perturbation theory
◦ Applications of spectral methods (ℓ∞ theory)

• Nonconvex optimization
◦ Basic optimization theory
◦ Generic local analysis for regularized gradient descent (GD)
◦ Refined local analysis for vanilla GD
◦ Global landscape analysis
◦ Gradient descent with random initialization

• Convex relaxation (maybe)
◦ Compressed sensing and sparse recovery
◦ Phase transition and convex geometry
◦ Low-rank matrix recovery
◦ Robust principal component analysis

• Minimax lower bounds (maybe)
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Logistics



Why you should not take this course

• There will be quite a few THEOREMS and PROOFS ...

• Nonrigorous/heuristic arguments from time to time
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Why you should consider taking this course

• There will be quite a few THEOREMS and PROOFS ...

◦ promote deeper understanding of scientific results

• Nonrigorous/heuristic arguments from time to time

◦ “nonrigorous” but grounded in rigorous theory
◦ help develop intuition
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Prerequisites

• linear algebra

• probability theory

• a programming language (e.g., Matlab, Python, Julia, . . .)

• knowledge in convex optimization
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Textbooks

We recommend these books, but will not follow them closely
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Useful references

• Spectral Methods for Data Science: A Statistical Perspective,
Yuxin Chen, Yuejie Chi, Jianqing Fan, and Cong Ma

• Nonconvex optimization meets low-rank matrix factorization: An
overview , Yuejie Chi, Yue M. Lu, and Yuxin Chen

• Convex optimization, Stephen Boyd, and Lieven Vandenberghe
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Course project

Two forms
• literature review
• original research

◦ You are strongly encouraged to combine it with your own research

Three milestones
• proposal (due Feb. 1st): up to 1 page

• in-class presentation: last week (week 9) of class

• report (due Mar. 6th): up to 4 pages with unlimited appendix
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