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Concentration inequalities

Let X1, X2, . . . , Xn be i.i.d. random variables, law of large numbers
tells us that

1
n

n∑
l=1

Xl − E
[

1
n

n∑
l=1

Xl

]
→ 0, as n→∞

Key message:

sum of independent random variables concentrate around its mean

— how fast does it concentrate?
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Bernstein’s inequality

Consider a sequence of independent random variables {Xl} ∈ R
• E[Xl] = 0 • |Xl| ≤ B for each l

• variance statistic:

v := E
[(∑

l

Xl

)2] =
n∑
l=1
E
[
X2
l

]

Theorem 4.1 (Bernstein’s inequality)

For all τ ≥ 0,

P
{∣∣∣∑

l
Xl

∣∣∣ ≥ τ} ≤ 2 exp
(
−τ2/2

v +Bτ/3

)

Matrix concentration 4-3



Tail behavior

P
{∣∣∣∑

l
Xl

∣∣∣ ≥ τ} ≤ 2 exp
(
−τ2/2

v +Bτ/3

)

• moderate-deviation regime (τ is small):
— sub-Gaussian tail behavior exp(−τ2/2v)

• large-deviation regime (τ is large):
— sub-exponential tail behavior exp(−3τ/2B) (slower decay)

• user-friendly form (exercise): with prob. 1−O(n−10)∣∣∣∑
l
Xl

∣∣∣ . √
v logn+B logn
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Tail behavior (cont.)

Gaussian tail exponential tail

1

Gaussian tail exponential tail

1

Gaussian tail exponential tail

1
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There are exponential concentration inequalities for
spectral norm of sum of independent random matrices



Matrix Bernstein inequality
Consider a sequence of independent random matrices

{
Xl ∈ Rd1×d2

}
• E[Xl] = 0 • ‖Xl‖ ≤ B for each l

• variance statistic:

v := max
{∥∥∥E [∑

l
XlX

>
l

]∥∥∥ , ∥∥∥E [∑
l
X>l Xl

]∥∥∥}
Theorem 4.2 (Matrix Bernstein inequality)

For all τ ≥ 0,

P
{∥∥∥∑

l
Xl

∥∥∥ ≥ τ} ≤ (d1 + d2) exp
(
−τ2/2

v +Bτ/3

)

User-friendly form: with probability at least 1−O((d1 + d2)−10)∥∥∥∑
l
Xl

∥∥∥ . √
v log(d1 + d2) +B log(d1 + d2) (4.1)
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Matrix Bernstein inequality
Consider a sequence of independent random matrices

{
Xl ∈ Rd1×d2

}
• E[Xl] = 0 • ‖Xl‖ ≤ B for each l

• variance statistic:

v := max
{∥∥∥E [∑

l
XlX

>
l

]∥∥∥ , ∥∥∥E [∑
l
X>l Xl

]∥∥∥}
Theorem 4.2 (Matrix Bernstein inequality)

For all τ ≥ 0,

P
{∥∥∥∑

l
Xl

∥∥∥ ≥ τ} ≤ (d1 + d2) exp
(
−τ2/2

v +Bτ/3

)

User-friendly form: with probability at least 1−O((d1 + d2)−10)∥∥∥∑
l
Xl

∥∥∥ . √
v log(d1 + d2) +B log(d1 + d2) (4.1)
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This lecture: detailed introduction to matrix Bernstein

An introduction to matrix concentration inequalities
— Joel Tropp ’15



Outline

• Background on matrix functions

• Matrix Laplace transform method

• Matrix Bernstein inequality
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Background on matrix functions



Matrix function

Suppose the eigendecomposition of a symmetric matrix A ∈ Rd×d is

A = U

 λ1
. . .

λd

U>

Then we can define

f(A) := U

 f(λ1)
. . .

f(λd)

U>

— align with our intuition about Ak
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Examples of matrix functions

• Let f(a) = c0 +
∑∞
k=1 cka

k, then

f(A) := c0I +
∞∑
k=1

ckA
k

• matrix exponential: eA := I +
∑∞
k=1

1
k!A

k

◦ monotonicity: if A �H, then tr eA ≤ tr eH

• matrix logarithm: log(eA) := A

◦ monotonicity: if 0 � A �H, then logA � log(H) (does not
hold for matrix exponential)
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Matrix moments and cumulants

Let X be a random symmetric matrix. Then
• matrix moment generating function (MGF):

MX(θ) := E[eθX ]

• matrix cumulant generating function (CGF):

ΞX(θ) := logE[eθX ]

— expectations may not exist for all θ
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Matrix Laplace transform method



Matrix Laplace transform

A key step for a scalar random variable Y : by Markov’s inequality,

P {Y ≥ t} ≤ inf
θ>0

e−θt E
[
eθY

]

This can be generalized to the matrix case
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Matrix Laplace transform

Lemma 4.3

Let Y be a random symmetric matrix. For all t ∈ R,

P {λmax(Y ) ≥ t} ≤ inf
θ>0

e−θt E
[
tr eθY

]
• can control the extreme eigenvalues of Y via the trace of the

matrix MGF
• similar result holds for minimum eigenvalue
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Proof of Lemma 4.3

For any θ > 0,

P {λmax(Y ) ≥ t} = P
{

eθλmax(Y ) ≥ eθt
}

≤ E[eθλmax(Y )]
eθt (Markov’s inequality)

= E[eλmax(θY )]
eθt

= E[λmax(eθY )]
eθt (eλmax(Z) = λmax(eZ))

≤ E[tr eθY ]
eθt

This completes the proof since it holds for any θ > 0
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Issues of the matrix MGF

The Laplace transform method is effective for controlling an
independent sum when MGF decomposes
• in the scalar case where X = X1 + · · ·+Xn with independent
{Xl}:

MX(θ) = E[eθX1+···+θXn ] = E[eθX1 ] · · ·E[eθXn ] =
n∏
l=1

MXl
(θ)︸ ︷︷ ︸

look at each Xl separately

Issues in the matrix settings:

eX1+X2 6= eX1eX2 unless X1 and X2 commute

tr eX1+···+Xn � tr eX1eX1 · · · eXn for n ≥ 3
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How about matrix CGF?

• in the scalar case where X = X1 + · · ·+Xn with independent
{Xl}:

ΞX(θ) = logMX(θ) =
n∑
l=1

logMXl
(θ)︸ ︷︷ ︸

look at each Xl separately

=
∑
l

ΞXl
(θ)

In matrix case, can we hope for

Ξ∑
l
Xl

(θ) =
∑
l

ΞXl
(θ) ?

— Nope; But...
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Subadditivity of matrix CGF

Fortunately, the matrix CGF satisfies certain subadditivity rules,
allowing us to decompose independent matrix components

Lemma 4.4

Consider a finite sequence {Xl}1≤l≤n of independent random
symmetric matrices. Then for any θ ∈ R,

E
[
tr eθ

∑
l
Xl

]
︸ ︷︷ ︸
tr exp

(
ΞΣlXl

(θ)
) ≤ tr exp

(∑
l
logE

[
eθXl

])
︸ ︷︷ ︸

tr exp
(∑

l
ΞXl

(θ)
)

• this is a deep result — based on Lieb’s Theorem!
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Lieb’s Theorem

Elliott Lieb

Theorem 4.5 (Lieb ’73)

Fix a symmetric matrix H. Then

A 7→ tr exp(H + logA)

is concave on positive-definite cone

Lieb’s Theorem immediately implies (exercise: Jensen’s inequality)

E
[
tr exp(H + X)

]
≤ tr exp

(
H + logE

[
eX
])

(4.2)
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Proof sketch of Lieb’s Theorem

Main observation: tr(·) admits a variational formula

Lemma 4.6

For any M � 0, one has

trM = sup
T�0

tr
[
T logM − T logT + T︸ ︷︷ ︸

relative entropy is −T logM+T logT−T+M

]
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Proof of Lemma 4.4

E
[
tr eθ

∑
l
Xl
]

= E
[
tr exp

(
θ
∑n−1

l=1
Xl + θXn

)]
≤ E

[
tr exp

(
θ
∑n−1

l=1
Xl + logE

[
eθXn

])]
(by (4.2))

≤ E
[
tr exp

(
θ
∑n−2

l=1
Xl + logE

[
eθXn−1

]
+ logE

[
eθXn

])]
≤ · · ·

≤ tr exp
(∑n

l=1
logE

[
eθXl

])
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Master bounds

Combining the Laplace transform method with the subadditivity of
CGF yields:

Theorem 4.7 (Master bounds for sum of independent matrices)

Consider a finite sequence {Xl} of independent random symmetric
matrices. Then

P
{
λmax

(∑
l
Xl

)
≥ t
}
≤ inf

θ>0

tr exp
(∑

l logE[eθXl ]
)

eθt

• this is a general result underlying the proofs of the matrix
Bernstein inequality and beyond (e.g., matrix Chernoff)
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Matrix Bernstein inequality



Matrix CGF

P
{
λmax

(∑
l
Xl

)
≥ t
}
≤ inf

θ>0

tr exp
(∑

l logE[eθXl ]
)

eθt

To invoke the master bound, one needs to control the matrix CGF︸ ︷︷ ︸
main step for proving matrix Bernstein
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Symmetric case

Consider a sequence of independent random symmetric matrices{
Xl ∈ Rd×d

}
• E[Xl] = 0 • λmax(Xl) ≤ B for each l

• variance statistic: v :=
∥∥E [∑lX

2
l

]∥∥
Theorem 4.8 (Matrix Bernstein inequality: symmetric case)

For all τ ≥ 0,

P
{
λmax

(∑
l
Xl

)
≥ τ

}
≤ d exp

(
−τ2/2

v +Bτ/3

)

— left as exercise to prove extension to rectangular case
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Bounding matrix CGF

For bounded random matrices, one can control the matrix CGF as
follows:

Lemma 4.9

Suppose E[X] = 0 and λmax(X) ≤ B. Then for 0 < θ < 3/B,

logE
[
eθX

]
� θ2/2

1− θB/3E[X2]
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Proof of Theorem 4.8

Let g(θ) := θ2/2
1−θB/3 , then it follows from the master bound that

P
{
λmax

(∑
i
Xi
)
≥ t
}
≤ inf

θ>0

tr exp
(∑n

i=1 logE[eθXi ]
)

eθt
Lemma 4.9
≤ inf

0<θ<3/B

tr exp
(
g(θ)

∑n
i=1 E[X2

i ]
)

eθt

≤ inf
0<θ<3/B

d exp
(
g(θ)v

)
eθt

Taking θ = t
v+Bt/3 and simplifying the above expression, we establish

matrix Bernstein
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Proof of Lemma 4.9
Define f(x) = eθx−1−θx

x2 , then for any X with λmax(X) ≤ B:

eθX = I + θX +
(
eθX − I − θX

)
= I + θX + X · f(X) ·X

� I + θX + f(B) ·X2

In addition, we note an elementary inequality: for any 0 < θ < 3/B,

f(B) = eθB − 1− θB
B2 = 1

B2

∞∑
k=2

(θB)k

k! ≤ θ2

2

∞∑
k=2

(θB)k−2

3k−2 = θ2/2
1− θB/3

=⇒ eθX � I + θX + θ2/2
1− θB/3 ·X

2

Since X is zero-mean, one further has

E
[
eθX

]
� I + θ2/2

1− θB/3E[X2] � exp
(

θ2/2
1− θB/3E[X2]

)
Finish by observing log is monotone
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Appendix: asymptotic notation

• f(n) . g(n) or f(n) = O(g(n)) means

lim sup
n→∞

|f(n)|
|g(n)| ≤ const

• f(n) & g(n) or f(n) = Ω(g(n)) means

lim inf
n→∞

|f(n)|
|g(n)| ≥ const

• f(n) � g(n) or f(n) = Θ(g(n)) means

f(n) . g(n) andf(n) & g(n)

• f(n) = o(g(n)) means

lim
n→∞

|f(n)|
|g(n)| = 0
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