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What we have learned so far

- Classical £ matrix perturbation theory:
e Davis-Kahan's sin ® theorem
e Wedin's sin ® theorem

e Eigenvector perturbation of probability transition matrices

- Matrix concentration inequalities:

e Matrix Bernstein inequality
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What we have learned so far

- Classical £ matrix perturbation theory:
e Davis-Kahan's sin ® theorem
e Wedin's sin ® theorem

e Eigenvector perturbation of probability transition matrices

- Matrix concentration inequalities:

e Matrix Bernstein inequality

— we will see their applications today
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Outline

e Community recovery in stochastic block model

— application of Davis-Kahan's theorem

e Low-rank matrix completion

— application of Wedin's theorem

e Ranking from pairwise comparisons

— application of eigenvector perturbation of prob. transition matrix
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Community recovery in stochastic block model



Stochastic block model (SBM)

xr = 1: 15t community xr = —1: 2" community

e n nodes {1,...,n}
e 2 communities

e 1 unknown variables: z7,..., 2} € {1,—1}
o encode community memberships
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Stochastic block model (SBM)

e observe a graph G

if 7 and j are from same co it
(i,7) € G with prob. D, ||z nd j are from sam mmunity
q, else

Here, p > ¢
e Goal: recover community memberships of all nodes, i.e., {2}
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Adjacency matrix

Consider the adjacency matrix A € R"*" of G: (assume A;; = p)

1, if(i,j)€g
Ay — (i, 7)
0, else
e WLOG, suppose 27 = --- =x;/2= 1; 12/2+1 == =-1
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Adjacency matrix

= E[A] +  A-E[A]
——
rank 2
Elaj— | PR ALl ) optayr  poa 1 [17,-17]
ql17T p11T 2 2 -1 ’
uninformative bias =zt =[x;]1<i<n
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Spectral clustering

= E[A] +  A-E[A]
——
rank 2

1. computing the leading eigenvector u = [u;|1<i<p of A — %IIT

{L if u; >0

2. rounding: output x; =
& OWPETITA L1 i <0
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Analysis of spectral clustering

Consider “ground-truth” matrix
M*:_E[A]_p;qlf_p—q[ ! ] (17 T,
which obeys

AL (M™) ::(]7_2@[)7717 and u* ::1[ Loy ]
n

Also, we have perturbed matrix

M::A—’%llT

Davis-Kahan implies if [|A — E[A]|| < A\ (M*) = w, then
IM — M| _ A -E[A]]

M(M*) — [M — M| @i 4 _R[A]]

dist(u,u*) < (5.1)
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Bounding ||A — E[A]|

Matrix Bernstein inequality tells us that
Lemma 5.1

Consider SBM with p > q and p 2, k’%. Then with high prob.

A —E[A]|| S vnplogn (5-2)

— better concentration yields \/np bound

e with high probability in this course often means “with probability
at least 1 — O(n=8)"
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Statistical accuracy of spectral clustering

Substitute ineq. (5.2) into ineq. (5.1) to reach

dist(u,ut) < — JATEAIL_ viplogn
b—an a4 —gA) ~ (P—a)n

provided that /nplogn = o((p — q)n)

o(1)

Now question is
— how to transfer from estimation error to mis-clustering error
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From estimation error to mis-clustering error

WLOG assume that ||u — u*||s = dist(u, u*). Consider the set
N = {i| |ui —uj| = 1/V/n}

We claim that

1 1 1 V]
=Y Yai#af} < Zl{fuz‘—uﬂ 2 } =
iz iz vn "

To see this, observe that for any i obeying x; # 7, one has
sgn(u;) # sgn(uy), thus indicating that |u; — u}| > |uf| =1/y/n
In the end, we have

[ — w*||3

W= e =
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Statistical accuracy of spectral clustering

n— logn
p q>> g
/P

e dense regime: if p < ¢ < 1, then this condition reads

logn
p—q> £ (extremely small gap)
V' n

alogn

=—>  almost exact recovery

and ¢ = bl‘;g" for a,b =<1, then

a—b>a

e “sparse” regime: if p =

This condition is information-theoretically optimal (up to log factor)
— Mossel, Neeman, Sly '15, Abbe '18
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Proof of Lemma 5.2

We write A — E[A] as sum of independent random matrices

A-E[A] =) (4;; —E[4;)])(eie] +eje])

%

1<j
We only need to consider Aypper = -, (Aij; — I[*E[/lm-])eie;r
::Xi’j
e First, ’Xz,]H <1=1B

e Since Var(4; ;) < p, one has E [X”XZTJ} = peie;-r, which gives
T T
ZKjE {Xi,sz‘,j} = ZKj pe;e; 2 npl,
Similarly, S, E | X[, X, ;| < np L. As a result,

v = max {H Zi’j E [XwXZTJ} Z@J.E {XJ—]Xz,J} H} <mnp
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Proof of Lemma 5.2 (cont.)

Take the matrix Bernstein inequality to conclude that with high prob.,

|A — E[A]]] < Vwvlogn+ Blogn < /nplogn

—aslongaspzlo%
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Low-rank matrix completion



Low-rank matrix completion

) v, Y y 2
s 3 > 2T eee
B R ? ?

A Y Y VA _ -
T vV a
\/ ? ? \/ ? ? ﬂ ? vt ? ? Friviricie ? oo
[ O A S [

? ? 7 Yottt b eoe
A O O G G A
? \/ ? ‘? \/ 7 i ; ? Yoot rinnnt ? ? triicts  eee
T v v P2 I R S S S R S

figure credit: Candés
e consider a low-rank matrix M* = U*S*V*T

e cach entry MZ*J is observed independently with prob. p

¢ intermediate goal: estimate U*, V*
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Spectral method for matrix completion

1. identify the key matrix M*

2. construct surrogate matrix M € R™*" as

4,37

%M-* if M7, is observed
ij = ’
0, else

o rationale for rescaling: ensures E[M] = M*

3. compute the rank-r SVD USV " of M, and return (U, 3, V)
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Statistical accuracy of spectral estimate

Let's analyze a simple case where M* = w*v*" with

1 1

* ~ * ~

=T, vV = —0, U7 indAer. N(OyIn)
]| [9]2

u

From Wedin's Theorem: if | M — M*|| < $01(M*) = 3, then

*
_ 1M - M

max {dist(u, u*), dist(v, v*)} < o1 (M)

= ||M — M*|| (5.3)
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Bounding ||M — M*||

Matrix Bernstein inequality tells us that

Lemma 5.2

Consider matrix completion with p >> log n

log®n

IM — M| 5
np

. Then with high prob.

=o(1) (5.4)
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Sample complexity

For rank-1 matrix completion,

log®n
P> &

== nearly accurate estimates

Sample complexity needed to yield reliable spectral estimates is
n?p =< nlog®n
optimal up to log factor

— sub-optimal accuracy though
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Proof of inequality (5.4)

Write M — M* =37, . X; j, where Xj; j = (M;; — MZ-*J)eZ-ejT
e First, based on Gaussianity, we have
logn
pn

o Next, E[XMXI.’] Var(M; ;)e;e; and hence

E[Z” Xi,sz‘Tj] =< {maxVar( )}nI = { max(M;;) }I

:= B (check)

| ~y

1
12X 5] < = max|
b

(2] p v
N log?n
= IE[ Z (XX Ll < pnﬁx(Mi,jf < iy (check)

Similar bounds hold for HIE[ .7 X1 Xi5]||. Therefore,

log?n
vmmax {[BIY, Xes XS] LRI, X%l | <

np
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Proof of inequality (5.4) (cont.)

Take the matrix Bernstein inequality to yield: if p > (log®n)/n, then

log® n

np

|M — M*|| < Vvlogn + Blogn =< <1
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Ranking from pairwise comparisons



Ranking from pairwise comparisons

® Wilader

pairwise comparisons for ranking tennis players
figure credit: Bozdki, Csatd, Temesi
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Bradley-Terry-Luce (logistic) model

preference score

wj

. i: rank
e 7 items to be ranked

e assign a latent positive score {w} }1<;<y to each item, so that
item 4 = item j if w] > w}
e each pair of items (7, j) is compared independently

w*

P {item j beats item ¢} = J
{item j } ot
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Bradley-Terry-Luce (logistic) model

—>

preference score

HHHHWHWH (T,

i: rank

wj

e 1 items to be ranked
e assign a latent positive score {w} }1<;<y to each item, so that
item 4 = item j if w] > w}
e each pair of items (7, j) is compared independently
. w}
ind. ) 1, with prob. 2~
Yij = L
0, else

e intermediate goal: estimate score vector w* (up to scaling)
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Spectral ranking

1. identify key matrix P*—probability transition matrix

w*

%"Eff@f’ if i £ 7
1- Zl:l;ﬁi Piflv ifi=y

Rationale:
o P* obeys

* DX ok Dk
w; Py = wi Py

(detailed balance)
o Thus, the stationary distribution 7 of P* obeys

- 1
o wf

*

T *

w (reveals true scores)
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Spectral ranking

2. construct a surrogate matrix P obeying

{;MJ, if i # j
V=30 Pigy ifi=

(2%

3. return leading left eigenvector 7 of P as score estimate

— closely related to PageRank
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Analysis of spectral ranking

Apply our perturbation bound to see

17— 7 e < [ El.
= 1 — max {)\Q(P*), _)\n(P*)} - ”EHfr*

provided that

1 — max {\2(P*), ~M\u(P*)} = | E|,.. >0 (5.5)
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Analysis of spectral ranking

Apply our perturbation bound to see

17— 7 e < [ El.
= 1 — max {)\Q(P*), _)\n(P*)} - ”EHfr*

provided that
1 —max {\o(P*), = \(P*)} — | E| .« >0 (5.5)

— need to understand spectral gap and noise size
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Spectral gap of Markov chain

Define condition number

Hlaxlgign w

*
K= L

*

ming <<, W;

Lemma 5.3
It follows that

1

e We omit the proof; it's based on comparison between two
reversible Markov chains
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Bound || E|| -

Recall that F .= P — P*

Lemma 5.4

With probability at least 1 — O(n™%),

1
1Bl < VRIBI S (/"=
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Analysis of spectral ranking (cont.)

Recall perturbation bound

70— 7 s < =" B,
= 1 — max {)\Q(P*), _)\n(P*)} - ||E||1'r*

< 4r?|m* T E| (provided that n > x°logn)

7r*
Note that for any v, one has
1

V]2 < Vax [V]]2, and vl < \/ﬁ |0|| 7+

As a result, one has
1 42
* *
V Tmin V Tmin

< 4?5 m* T E|2 < 45%5| B ||7*])2

7T E|

[ RS l7e = 7"z <
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Proof of Lemma 5.4

By construction of P and P*, we see that

1
Eij=Pij = Pl = —(yij — Elyis)) (5.6)

for any i # 7. In addition, for all 1 < i < n, it follows that
1
Eii=Py=Pi==3 Eij=-—3% (i —Ell). (67
Jij#e Jig#

We shall decompose the matrix E into three parts: upper triangular
part, diagonal part, and lower triangular part:

1E|| < [ Eupper|| + [ Ediag | + || Eiowerll (5.8)

— we will upper bound || Eypper||
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Control || Eyis||

Note that

| Bagll = oo 1Bl = oo | S (i -
JijF#i

Elyi; )‘

X

e First, we have | X;| <1='B
e Second, one has

Y E[X7]= ) Var(yij) <n=

JigFi Juj#

By Bernstein's inequality and union bound, we have w.h.p

max |E; ;| <
T

S\H

1
- (vvlogn + Blogn) < osn

n
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Control || E,pper||

First of all, we have

E pper = Z Ei,jeiejT = Z Ly — E[yi,j])eie;‘r

1<J 1<j

=X, ;

Then
o |Xijl<+=nB
e Since Var(y; ;) <1, one has E {XMXZTJ} <1 e;e; , which gives

nZ
1 1
> E [Xi,inTj] =3 el < S,

i<j m2

Similarly, 32, E | X[, X, ;| < 1 T,. As a result,

o {2, 2 [ 5, [} <
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Control ||E, e (cont.)

Invoke matrix Bernstein to obtain

logn
”EupperH S \/m—l— Blogn = \/?

— same bound holds for || Eigwer||
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Putting pieces together

Assuming k = O(1), we have

[EPS

< 220

2

e vanishing relative error when n goes to infinity

e optimal error up to a log factor

— Negahban, Oh, Shah'16, Chen, Fan, Ma, Wang'19
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