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What we have learned so far

- Classical ℓ2 matrix perturbation theory:
• Davis-Kahan’s sinΘ theorem
• Wedin’s sinΘ theorem
• Eigenvector perturbation of probability transition matrices

- Matrix concentration inequalities:
• Matrix Bernstein inequality

— we will see their applications today
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Outline

• Community recovery in stochastic block model
— application of Davis-Kahan’s theorem

• Low-rank matrix completion
— application of Wedin’s theorem

• Ranking from pairwise comparisons
— application of eigenvector perturbation of prob. transition matrix
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Community recovery in stochastic block model



Stochastic block model (SBM)

x⋆
i = 1: 1st community x⋆

i = −1: 2nd community

• n nodes {1, . . . , n}

• 2 communities
• n unknown variables: x⋆

1, . . . , x⋆
n ∈ {1, −1}

◦ encode community memberships
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Stochastic block model (SBM)

G

• observe a graph G

(i, j) ∈ G with prob.
{

p, if i and j are from same community
q, else

Here, p > q

• Goal: recover community memberships of all nodes, i.e., {x⋆
i }

Applications of spectral methods (ℓ2 theory) 5-6



Adjacency matrix

Consider the adjacency matrix A ∈ Rn×n of G: (assume Aii = p)

Ai,j =
{

1, if (i, j) ∈ G
0, else

• WLOG, suppose x⋆
1 = · · · = x⋆

n/2 = 1; x⋆
n/2+1 = · · · = x⋆

n = −1
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Adjacency matrix

A = E[A]︸ ︷︷ ︸
rank 2

+ A − E [A]

E[A] =
[

p11⊤ q11⊤

q11⊤ p11⊤

]
= p + q

2 11⊤︸ ︷︷ ︸
uninformative bias

+ p − q

2

[
1

−1

]
︸ ︷︷ ︸

=x⋆=[xi]1≤i≤n

[
1⊤, −1⊤]
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Spectral clustering

A = E[A]︸ ︷︷ ︸
rank 2

+ A − E [A]

1. computing the leading eigenvector u = [ui]1≤i≤n of A− p+q
2 11⊤

2. rounding: output xi =
{

1, if ui ≥ 0
−1, if ui < 0
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Analysis of spectral clustering
Consider “ground-truth” matrix

M⋆ := E[A] − p + q

2 11⊤ = p − q

2

[
1

−1

] [
1⊤ −1⊤

]
,

which obeys

λ1(M⋆) := (p − q)n
2 , and u⋆ := 1√

n

[
1n/2

−1n/2

]
.

Also, we have perturbed matrix

M := A − p + q

2 11⊤

Davis-Kahan implies if ∥A − E[A]∥ < λ1(M⋆) = (p−q)n
2 , then

dist(u,u⋆) ≤ ∥M − M⋆∥
λ1(M⋆) − ∥M − M∥

= ∥A − E[A]∥
(p−q)n

2 − ∥A − E[A]∥
(5.1)
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Bounding ∥A − E[A]∥

Matrix Bernstein inequality tells us that

Lemma 5.1

Consider SBM with p > q and p ≳ log n
n . Then with high prob.

∥A − E[A]∥ ≲
√

np log n (5.2)

— better concentration yields √
np bound

• with high probability in this course often means “with probability
at least 1 − O(n−8)”
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Statistical accuracy of spectral clustering

Substitute ineq. (5.2) into ineq. (5.1) to reach

dist(u,u⋆) ≤ ∥A − E[A]∥
(p−q)n

2 − ∥A − E[A]∥
≲

√
np log n

(p − q)n = o(1)

provided that
√

np log n = o((p − q)n)

Now question is
— how to transfer from estimation error to mis-clustering error
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From estimation error to mis-clustering error

WLOG assume that ∥u − u⋆∥2 = dist
(
u,u⋆

)
. Consider the set

N :=
{
i | |ui − u⋆

i | ≥ 1/
√

n
}

We claim that

1
n

n∑
i=1

1
{
xi ̸= x⋆

i

}
≤ 1

n

n∑
i=1

1

{
|ui − u⋆

i | ≥ 1√
n

}
= |N |

n

To see this, observe that for any i obeying xi ̸= x⋆
i , one has

sgn(ui) ̸= sgn(u⋆
i ), thus indicating that |ui − u⋆

i | ≥ |u⋆
i | = 1/

√
n

In the end, we have

|N | ≤ ∥u − u⋆∥2
2

(1/
√

n)2 = o
(
n

)
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Statistical accuracy of spectral clustering

p − q
√

p
≫

√
log n

n
=⇒ almost exact recovery

• dense regime: if p ≍ q ≍ 1, then this condition reads

p − q ≫

√
log n

n
(extremely small gap)

• “sparse” regime: if p = a log n
n and q = b log n

n for a, b ≍ 1, then

a − b ≫
√

a

This condition is information-theoretically optimal (up to log factor)
— Mossel, Neeman, Sly ’15, Abbe ’18
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Proof of Lemma 5.2
We write A − E[A] as sum of independent random matrices

A − E[A] =
∑
i<j

(
Ai,j − E[Ai,j ]

)(
eie

⊤
j + eje

⊤
i )

We only need to consider Aupper :=
∑

i<j

(
Ai,j − E[Ai,j ]

)
eie

⊤
j︸ ︷︷ ︸

=:Xi,j

• First, ∥Xi,j∥ ≤ 1 =: B

• Since Var(Ai,j) ≤ p, one has E
[
Xi,jX

⊤
i,j

]
⪯ peie

⊤
i , which gives∑

i<j
E

[
Xi,jX

⊤
i,j

]
⪯

∑
i<j

peie
⊤
i ⪯ np In

Similarly,
∑

i<j E
[
X⊤

i,jXi,j

]
⪯ np In. As a result,

v := max
{∥∥∥ ∑

i,j
E

[
Xi,jX

⊤
i,j

] ∥∥∥,
∥∥∥ ∑

i,j
E

[
X⊤

i,jXi,j

] ∥∥∥}
≤ np
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Proof of Lemma 5.2 (cont.)

Take the matrix Bernstein inequality to conclude that with high prob.,

∥A − E[A]∥ ≲
√

v log n + B log n ≲
√

np log n

— as long as p ≳ log n
n
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Low-rank matrix completion



Low-rank matrix completion



✓ ? ? ? ✓ ?
? ? ✓ ✓ ? ?
✓ ? ? ✓ ? ?
? ? ✓ ? ? ✓
✓ ? ? ? ? ?
? ✓ ? ? ✓ ?
? ? ✓ ✓ ? ?



? ? ? ?

?

?

??

??

???

?

?

figure credit: Candès
• consider a low-rank matrix M⋆ = U⋆Σ⋆V ⋆⊤

• each entry M⋆
i,j is observed independently with prob. p

• intermediate goal: estimate U⋆,V ⋆
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Spectral method for matrix completion

1. identify the key matrix M⋆

2. construct surrogate matrix M ∈ Rn×n as

Mi,j =
{1

pM⋆
i,j , if M⋆

i,j is observed
0, else

◦ rationale for rescaling: ensures E[M ] = M⋆

3. compute the rank-r SVD UΣV ⊤ of M , and return (U ,Σ,V )
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Statistical accuracy of spectral estimate

Let’s analyze a simple case where M⋆ = u⋆v⋆⊤ with

u⋆ = 1
∥ũ∥2

ũ, v⋆ = 1
∥ṽ∥2

ṽ, ũ, ṽ
indep.∼ N (0, In)

From Wedin’s Theorem: if ∥M − M⋆∥ ≤ 1
2σ1(M⋆) = 1

2 , then

max {dist(u,u⋆), dist(v,v⋆)} ≲ ∥M − M⋆∥
σ1(M⋆) ≍ ∥M − M⋆∥ (5.3)
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Bounding ∥M − M ⋆∥

Matrix Bernstein inequality tells us that

Lemma 5.2

Consider matrix completion with p ≫ log3 n
n . Then with high prob.

∥M − M⋆∥ ≲
√

log3 n

np
= o(1) (5.4)
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Sample complexity

For rank-1 matrix completion,

p ≫ log3 n

n
=⇒ nearly accurate estimates

Sample complexity needed to yield reliable spectral estimates is

n2p ≍ n log3 n︸ ︷︷ ︸
optimal up to log factor

— sub-optimal accuracy though
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Proof of inequality (5.4)
Write M − M⋆ =

∑
i,j Xi,j , where Xi,j = (Mi,j − M⋆

i,j)eie
⊤
j

• First, based on Gaussianity, we have

∥Xi,j∥ ≤ 1
p

max
i,j

|M⋆
i,j | ≲ log n

pn
:= B (check)

• Next, E
[
Xi,jX

⊤
i,j

]
= Var(Mi,j)eie

⊤
i and hence

E
[ ∑

i,j
Xi,jX

⊤
i,j

]
⪯

{
max

i,j
Var

(
Mi,j

)}
nI ⪯

{n

p
max

i,j
(M⋆

i,j)2
}
I

=⇒
∥∥E[ ∑

i,j
Xi,jX

⊤
i,j

]∥∥ ≤ n

p
max

i,j
(M⋆

i,j)2 ≲ log2 n

np
(check)

Similar bounds hold for
∥∥E[ ∑

i,j X
⊤
i,jXi,j

]∥∥. Therefore,

v := max
{∥∥E[ ∑

i,j
Xi,jX

⊤
i,j

]∥∥,
∥∥E[ ∑

i,j
X⊤

i,jXi,j
]∥∥}

≲ log2 n

np
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Proof of inequality (5.4) (cont.)

Take the matrix Bernstein inequality to yield: if p ≫ (log3 n)/n, then

∥M − M⋆∥ ≲
√

v log n + B log n ≍

√
log3 n

np
≪ 1
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Ranking from pairwise comparisons



Ranking from pairwise comparisons

pairwise comparisons for ranking tennis players
figure credit: Bozóki, Csató, Temesi

Applications of spectral methods (ℓ2 theory) 5-26



Bradley-Terry-Luce (logistic) model

i: rank wi: preference score
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• n items to be ranked

• assign a latent positive score {w⋆
i }1≤i≤n to each item, so that

item i ≻ item j if w⋆
i > w⋆

j

• each pair of items (i, j) is compared independently

P {item j beats item i} =
w⋆

j

w⋆
i + w⋆

j

yi,j
ind.=

1, with prob. w⋆
j

w⋆
i +w⋆

j

0, else
• intermediate goal: estimate score vector w⋆ (up to scaling)
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• assign a latent positive score {w⋆
i }1≤i≤n to each item, so that

item i ≻ item j if w⋆
i > w⋆

j

• each pair of items (i, j) is compared independently

P {item j beats item i} =
w⋆

j

w⋆
i + w⋆

j
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ind.=

1, with prob. w⋆
j
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0, else
• intermediate goal: estimate score vector w⋆ (up to scaling)
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Spectral ranking

1. identify key matrix P ⋆—probability transition matrix

P ⋆
i,j =


1
n · w⋆

j

w⋆
i +w⋆

j
, if i ̸= j

1 −
∑

l:l ̸=i P ⋆
i,l, if i = j

Rationale:
◦ P ⋆ obeys

w⋆
i P ⋆

i,j = w⋆
j P ⋆

j,i (detailed balance)

◦ Thus, the stationary distribution π⋆ of P ⋆ obeys

π⋆ = 1∑
l w⋆

l

w⋆ (reveals true scores)
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Spectral ranking

2. construct a surrogate matrix P obeying

Pi,j =
{ 1

nyi,j , if i ̸= j

1 −
∑

l:l ̸=i Pi,l, if i = j

3. return leading left eigenvector π of P as score estimate

— closely related to PageRank
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Analysis of spectral ranking

Apply our perturbation bound to see

∥π − π⋆∥π⋆ ≤
∥∥π⋆⊤E

∥∥
π⋆

1 − max {λ2(P ⋆), −λn(P ⋆)} − ∥E∥π⋆

provided that

1 − max
{
λ2(P ⋆), −λn(P ⋆)

}
− ∥E∥π⋆ > 0 (5.5)

— need to understand spectral gap and noise size
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Spectral gap of Markov chain

Define condition number

κ := max1≤i≤n w⋆
i

min1≤i≤n w⋆
i

Lemma 5.3

It follows that

1 − max
{
λ2(P ⋆), −λn(P ⋆)

}
≥ 1

2κ2 .

• We omit the proof; it’s based on comparison between two
reversible Markov chains

Applications of spectral methods (ℓ2 theory) 5-31



Bound ∥E∥π⋆

Recall that E := P − P ⋆

Lemma 5.4

With probability at least 1 − O(n−8),

∥E∥π⋆ ≤
√

κ ∥E∥ ≲
√

κ log n

n
.
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Analysis of spectral ranking (cont.)
Recall perturbation bound

∥π − π⋆∥π⋆ ≤
∥∥π⋆⊤E

∥∥
π⋆

1 − max {λ2(P ⋆), −λn(P ⋆)} − ∥E∥π⋆

≤ 4κ2∥∥π⋆⊤E
∥∥
π⋆ (provided that n ≫ κ5 log n)

Note that for any v, one has

∥v∥π⋆ ≤
√

π⋆
max ∥v∥2, and ∥v∥2 ≤ 1√

π⋆
min

∥v∥π⋆

As a result, one has

∥π − π⋆∥2 ≤ 1√
π⋆

min
∥π − π⋆∥π⋆ ≤ 4κ2√

π⋆
min

∥π⋆⊤E∥π⋆

≤ 4κ2.5∥π⋆⊤E∥2 ≤ 4κ2.5∥E∥ ∥π⋆∥2
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Proof of Lemma 5.4

By construction of P and P ⋆, we see that

Ei,j = Pi,j − P ⋆
i,j = 1

n

(
yi,j − E[yi,j ]

)
(5.6)

for any i ̸= j. In addition, for all 1 ≤ i ≤ n, it follows that

Ei,i = Pi,i − P ⋆
i,i = −

∑
j:j ̸=i

Ei,j = − 1
n

∑
j:j ̸=i

(
yi,j − E[yi,j ]

)
. (5.7)

We shall decompose the matrix E into three parts: upper triangular
part, diagonal part, and lower triangular part:

∥E∥ ≤ ∥Eupper∥ + ∥Ediag∥ + ∥Elower∥ (5.8)

— we will upper bound ∥Eupper∥
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Control ∥Ediag∥
Note that

∥Ediag∥ = max
1≤i≤n

|Ei,i| = max
1≤i≤n

1
n

∣∣∣ ∑
j:j ̸=i

(
yi,j − E[yi,j ]

︸ ︷︷ ︸
=:Xj

)∣∣∣

• First, we have |Xj | ≤ 1 =: B

• Second, one has∑
j:j ̸=i

E[X2
j ] =

∑
j:j ̸=i

Var(yi,j) ≤ n =: v

By Bernstein’s inequality and union bound, we have w.h.p.

max
i

|Ei,i| ≲
1
n

· (
√

v log n + B log n) ≍

√
log n

n
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Control ∥Eupper∥
First of all, we have

Eupper =
∑
i<j

Ei,jeie
⊤
j =

∑
i<j

1
n

(
yi,j − E[yi,j ]

)
eie

⊤
j︸ ︷︷ ︸

=:Xi,j

Then
• ∥Xi,j∥ ≤ 1

n =: B

• Since Var(yi,j) ≤ 1, one has E
[
Xi,jX

⊤
i,j

]
⪯ 1

n2eie
⊤
i , which gives

∑
i<j

E
[
Xi,jX

⊤
i,j

]
⪯

∑
i<j

1
n2eie

⊤
i ⪯ 1

n
In

Similarly,
∑

i<j E
[
X⊤

i,jXi,j

]
⪯ 1

n In. As a result,

v := max
{∥∥∥ ∑

i,j
E

[
Xi,jX

⊤
i,j

] ∥∥∥,
∥∥∥ ∑

i,j
E

[
X⊤

i,jXi,j

] ∥∥∥}
≤ 1

n

Applications of spectral methods (ℓ2 theory) 5-36



Control ∥Eupper∥ (cont.)

Invoke matrix Bernstein to obtain

∥Eupper∥ ≲
√

v log n + B log n ≍

√
log n

n

— same bound holds for ∥Elower∥
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Putting pieces together

Assuming κ = O(1), we have

∥π − π⋆∥2 ≲
√

log n

n
∥π⋆∥2

• vanishing relative error when n goes to infinity
• optimal error up to a log factor

— Negahban, Oh, Shah ’16, Chen, Fan, Ma, Wang ’19
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