STAT 37797: Mathematics of Data Science

Applications of spectral methods (ℓ_{2} theory)

Cong Ma
University of Chicago, Winter 2024

What we have learned so far

- Classical ℓ_{2} matrix perturbation theory:
- Davis-Kahan's $\sin \Theta$ theorem
- Wedin's $\sin \Theta$ theorem
- Eigenvector perturbation of probability transition matrices
- Matrix concentration inequalities:
- Matrix Bernstein inequality

What we have learned so far

- Classical ℓ_{2} matrix perturbation theory:
- Davis-Kahan's $\sin \Theta$ theorem
- Wedin's $\sin \Theta$ theorem
- Eigenvector perturbation of probability transition matrices
- Matrix concentration inequalities:
- Matrix Bernstein inequality
- we will see their applications today

Outline

- Community recovery in stochastic block model
- application of Davis-Kahan's theorem
- Low-rank matrix completion
- application of Wedin's theorem
- Ranking from pairwise comparisons
- application of eigenvector perturbation of prob. transition matrix

Community recovery in stochastic block model

Stochastic block model (SBM)

$$
x_{i}^{\star}=1: 1^{\text {st }} \text { community } \quad x_{i}^{\star}=-1: 2^{\text {nd }} \text { community }
$$

- n nodes $\{1, \ldots, n\}$
- 2 communities
- n unknown variables: $x_{1}^{\star}, \ldots, x_{n}^{\star} \in\{1,-1\}$
- encode community memberships

Stochastic block model (SBM)

\mathcal{G}

- observe a graph \mathcal{G}
$(i, j) \in \mathcal{G}$ with prob. $\begin{cases}p, & \text { if } i \text { and } j \text { are from same community } \\ q, & \text { else }\end{cases}$
Here, $p>q$
- Goal: recover community memberships of all nodes, i.e., $\left\{x_{i}^{\star}\right\}$

Adjacency matrix

Consider the adjacency matrix $\boldsymbol{A} \in \mathbb{R}^{n \times n}$ of \mathcal{G} : (assume $A_{i i}=p$)

$$
A_{i, j}= \begin{cases}1, & \text { if }(i, j) \in \mathcal{G} \\ 0, & \text { else }\end{cases}
$$

- WLOG, suppose $x_{1}^{\star}=\cdots=x_{n / 2}^{\star}=1 ; x_{n / 2+1}^{\star}=\cdots=x_{n}^{\star}=-1$

Adjacency matrix

Spectral clustering

1. computing the leading eigenvector $\boldsymbol{u}=\left[u_{i}\right]_{1 \leq i \leq n}$ of $\boldsymbol{A}-\frac{p+q}{2} \mathbf{1 1}^{\top}$
2. rounding: output $x_{i}= \begin{cases}1, & \text { if } u_{i} \geq 0 \\ -1, & \text { if } u_{i}<0\end{cases}$

Analysis of spectral clustering

Consider "ground-truth" matrix

$$
M^{\star}:=\mathbb{E}[A]-\frac{p+q}{2} \mathbf{1 1}^{\top}=\frac{p-q}{2}\left[\begin{array}{c}
\mathbf{1} \\
-\mathbf{1}
\end{array}\right]\left[\begin{array}{ll}
\mathbf{1}^{\top} & -\mathbf{1}^{\top}
\end{array}\right],
$$

which obeys

$$
\lambda_{1}\left(\boldsymbol{M}^{\star}\right):=\frac{(p-q) n}{2}, \quad \text { and } \quad \boldsymbol{u}^{\star}:=\frac{1}{\sqrt{n}}\left[\begin{array}{c}
\mathbf{1}_{n / 2} \\
-\mathbf{1}_{n / 2}
\end{array}\right] .
$$

Also, we have perturbed matrix

$$
\boldsymbol{M}:=\boldsymbol{A}-\frac{p+q}{2} \mathbf{1 1}^{\top}
$$

Davis-Kahan implies if $\|\boldsymbol{A}-\mathbb{E}[\boldsymbol{A}]\|<\lambda_{1}\left(\boldsymbol{M}^{\star}\right)=\frac{(p-q) n}{2}$, then

$$
\begin{equation*}
\operatorname{dist}\left(\boldsymbol{u}, \boldsymbol{u}^{\star}\right) \leq \frac{\left\|\boldsymbol{M}-\boldsymbol{M}^{\star}\right\|}{\lambda_{1}\left(\boldsymbol{M}^{\star}\right)-\|\boldsymbol{M}-\boldsymbol{M}\|}=\frac{\|\boldsymbol{A}-\mathbb{E}[\boldsymbol{A}]\|}{\frac{(p-q) n}{2}-\|\boldsymbol{A}-\mathbb{E}[\boldsymbol{A}]\|} \tag{5.1}
\end{equation*}
$$

Bounding $\|A-\mathbb{E}[\boldsymbol{A}]\|$

Matrix Bernstein inequality tells us that

Lemma 5.1

Consider SBM with $p>q$ and $p \gtrsim \frac{\log n}{n}$. Then with high prob.

$$
\begin{equation*}
\|\boldsymbol{A}-\mathbb{E}[\boldsymbol{A}]\| \lesssim \sqrt{n p \log n} \tag{5.2}
\end{equation*}
$$

- better concentration yields $\sqrt{n p}$ bound
- with high probability in this course often means "with probability at least $1-O\left(n^{-8}\right)$ "

Statistical accuracy of spectral clustering

Substitute ineq. (5.2) into ineq. (5.1) to reach

$$
\operatorname{dist}\left(\boldsymbol{u}, \boldsymbol{u}^{\star}\right) \leq \frac{\|\boldsymbol{A}-\mathbb{E}[\boldsymbol{A}]\|}{\frac{(p-q) n}{2}-\|\boldsymbol{A}-\mathbb{E}[\boldsymbol{A}]\|} \lesssim \frac{\sqrt{n p \log n}}{(p-q) n}=o(1)
$$

provided that $\sqrt{n p \log n}=o((p-q) n)$

Now question is

- how to transfer from estimation error to mis-clustering error

From estimation error to mis-clustering error

WLOG assume that $\left\|\boldsymbol{u}-\boldsymbol{u}^{\star}\right\|_{2}=\operatorname{dist}\left(\boldsymbol{u}, \boldsymbol{u}^{\star}\right)$. Consider the set

$$
\mathcal{N}:=\left\{i| | u_{i}-u_{i}^{\star} \mid \geq 1 / \sqrt{n}\right\}
$$

We claim that

$$
\frac{1}{n} \sum_{i=1}^{n} \mathbb{1}\left\{x_{i} \neq x_{i}^{\star}\right\} \leq \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}\left\{\left|u_{i}-u_{i}^{\star}\right| \geq \frac{1}{\sqrt{n}}\right\}=\frac{|\mathcal{N}|}{n}
$$

To see this, observe that for any i obeying $x_{i} \neq x_{i}^{\star}$, one has $\operatorname{sgn}\left(u_{i}\right) \neq \operatorname{sgn}\left(u_{i}^{\star}\right)$, thus indicating that $\left|u_{i}-u_{i}^{\star}\right| \geq\left|u_{i}^{\star}\right|=1 / \sqrt{n}$ In the end, we have

$$
|\mathcal{N}| \leq \frac{\left\|\boldsymbol{u}-\boldsymbol{u}^{\star}\right\|_{2}^{2}}{(1 / \sqrt{n})^{2}}=o(n)
$$

Statistical accuracy of spectral clustering

$$
\frac{p-q}{\sqrt{p}} \gg \sqrt{\frac{\log n}{n}} \Longrightarrow \quad \text { almost exact recovery }
$$

- dense regime: if $p \asymp q \asymp 1$, then this condition reads

$$
p-q \gg \sqrt{\frac{\log n}{n}} \quad \text { (extremely small gap) }
$$

- "sparse" regime: if $p=\frac{a \log n}{n}$ and $q=\frac{b \log n}{n}$ for $a, b \asymp 1$, then

$$
a-b \gg \sqrt{a}
$$

This condition is information-theoretically optimal (up to log factor)

- Mossel, Neeman, Sly '15, Abbe '18

Proof of Lemma 5.2

We write $\boldsymbol{A}-\mathbb{E}[\boldsymbol{A}]$ as sum of independent random matrices

$$
\boldsymbol{A}-\mathbb{E}[\boldsymbol{A}]=\sum_{i<j}\left(A_{i, j}-\mathbb{E}\left[A_{i, j}\right]\right)\left(\boldsymbol{e}_{i} \boldsymbol{e}_{j}^{\top}+\boldsymbol{e}_{j} \boldsymbol{e}_{i}^{\top}\right)
$$

We only need to consider $\boldsymbol{A}_{\text {upper }}:=\sum_{i<j} \underbrace{\left(A_{i, j}-\mathbb{E}\left[A_{i, j}\right]\right) \boldsymbol{e}_{i} \boldsymbol{e}_{j}^{\top}}_{=: \boldsymbol{X}_{i, j}}$

- First, $\left\|\boldsymbol{X}_{i, j}\right\| \leq 1=: B$
- Since $\operatorname{Var}\left(A_{i, j}\right) \leq p$, one has $\mathbb{E}\left[\boldsymbol{X}_{i, j} \boldsymbol{X}_{i, j}^{\top}\right] \preceq p \boldsymbol{e}_{i} \boldsymbol{e}_{i}^{\top}$, which gives

$$
\sum_{i<j} \mathbb{E}\left[\boldsymbol{X}_{i, j} \boldsymbol{X}_{i, j}^{\top}\right] \preceq \sum_{i<j} p \boldsymbol{e}_{i} \boldsymbol{e}_{i}^{\top} \preceq n p \boldsymbol{I}_{n}
$$

Similarly, $\sum_{i<j} \mathbb{E}\left[\boldsymbol{X}_{i, j}^{\top} \boldsymbol{X}_{i, j}\right] \preceq n p \boldsymbol{I}_{n}$. As a result,

$$
v:=\max \left\{\left\|\sum_{i, j} \mathbb{E}\left[\boldsymbol{X}_{i, j} \boldsymbol{X}_{i, j}^{\top}\right]\right\|,\left\|\sum_{i, j} \mathbb{E}\left[\boldsymbol{X}_{i, j}^{\top} \boldsymbol{X}_{i, j}\right]\right\|\right\} \leq n p
$$

Proof of Lemma 5.2 (cont.)

Take the matrix Bernstein inequality to conclude that with high prob.,

$$
\begin{aligned}
\|\boldsymbol{A}-\mathbb{E}[\boldsymbol{A}]\| \lesssim \sqrt{v \log n}+B \log n & \lesssim \sqrt{n p \log n} \\
& \text { - as long as } p \gtrsim \frac{\log n}{n}
\end{aligned}
$$

Low-rank matrix completion

Low-rank matrix completion

- consider a low-rank matrix $\boldsymbol{M}^{\star}=\boldsymbol{U}^{\star} \boldsymbol{\Sigma}^{\star} \boldsymbol{V}^{\star \top}$
- each entry $M_{i, j}^{\star}$ is observed independently with prob. p
- intermediate goal: estimate $\boldsymbol{U}^{\star}, \boldsymbol{V}^{\star}$

Spectral method for matrix completion

1. identify the key matrix M^{\star}
2. construct surrogate matrix $\boldsymbol{M} \in \mathbb{R}^{n \times n}$ as

$$
M_{i, j}= \begin{cases}\frac{1}{p} M_{i, j}^{\star}, & \text { if } M_{i, j}^{\star} \text { is observed } \\ 0, & \text { else }\end{cases}
$$

- rationale for rescaling: ensures $\mathbb{E}[\boldsymbol{M}]=M^{\star}$

3. compute the rank-r SVD $\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{\top}$ of \boldsymbol{M}, and return $(\boldsymbol{U}, \boldsymbol{\Sigma}, \boldsymbol{V})$

Statistical accuracy of spectral estimate

Let's analyze a simple case where $\boldsymbol{M}^{\star}=\boldsymbol{u}^{\star} \boldsymbol{v}^{\star \top}$ with

$$
\boldsymbol{u}^{\star}=\frac{1}{\|\tilde{\boldsymbol{u}}\|_{2}} \tilde{\boldsymbol{u}}, \quad \boldsymbol{v}^{\star}=\frac{1}{\|\tilde{\boldsymbol{v}}\|_{2}} \tilde{\boldsymbol{v}}, \quad \tilde{\boldsymbol{u}}, \tilde{\boldsymbol{v}} \quad \stackrel{\text { indep. }}{\sim} \mathcal{N}\left(\mathbf{0}, \boldsymbol{I}_{n}\right)
$$

From Wedin's Theorem: if $\left\|\boldsymbol{M}-\boldsymbol{M}^{\star}\right\| \leq \frac{1}{2} \sigma_{1}\left(\boldsymbol{M}^{\star}\right)=\frac{1}{2}$, then

$$
\begin{equation*}
\max \left\{\operatorname{dist}\left(\boldsymbol{u}, \boldsymbol{u}^{\star}\right), \operatorname{dist}\left(\boldsymbol{v}, \boldsymbol{v}^{\star}\right)\right\} \lesssim \frac{\left\|\boldsymbol{M}-\boldsymbol{M}^{\star}\right\|}{\sigma_{1}\left(\boldsymbol{M}^{\star}\right)} \asymp\left\|\boldsymbol{M}-\boldsymbol{M}^{\star}\right\| \tag{5.3}
\end{equation*}
$$

Bounding ||M-M*|

Matrix Bernstein inequality tells us that

Lemma 5.2

Consider matrix completion with $p \gg \frac{\log ^{3} n}{n}$. Then with high prob.

$$
\begin{equation*}
\left\|\boldsymbol{M}-\boldsymbol{M}^{\star}\right\| \lesssim \sqrt{\frac{\log ^{3} n}{n p}}=o(1) \tag{5.4}
\end{equation*}
$$

Sample complexity

For rank-1 matrix completion,

$$
p \gg \frac{\log ^{3} n}{n} \quad \Longrightarrow \quad \text { nearly accurate estimates }
$$

Sample complexity needed to yield reliable spectral estimates is

$$
\underbrace{n^{2} p \asymp n \log ^{3} n}_{\text {optimal up to } \log \text { factor }}
$$

- sub-optimal accuracy though

Proof of inequality (5.4)

Write $\boldsymbol{M}-\boldsymbol{M}^{\star}=\sum_{i, j} \boldsymbol{X}_{i, j}$, where $\boldsymbol{X}_{i, j}=\left(M_{i, j}-M_{i, j}^{\star}\right) \boldsymbol{e}_{i} \boldsymbol{e}_{j}^{\top}$

- First, based on Gaussianity, we have

$$
\left\|\boldsymbol{X}_{i, j}\right\| \leq \frac{1}{p} \max _{i, j}\left|M_{i, j}^{\star}\right| \lesssim \frac{\log n}{p n}:=B \quad \text { (check) }
$$

- Next, $\mathbb{E}\left[\boldsymbol{X}_{i, j} \boldsymbol{X}_{i, j}^{\top}\right]=\operatorname{Var}\left(M_{i, j}\right) \boldsymbol{e}_{i} \boldsymbol{e}_{i}^{\top}$ and hence

$$
\begin{aligned}
& \mathbb{E}\left[\sum_{i, j} \boldsymbol{X}_{i, j} \boldsymbol{X}_{i, j}^{\top}\right] \preceq\left\{\max _{i, j} \operatorname{Var}\left(M_{i, j}\right)\right\} n \boldsymbol{I} \preceq\left\{\frac{n}{p} \max _{i, j}\left(M_{i, j}^{\star}\right)^{2}\right\} \boldsymbol{I} \\
& \Longrightarrow \quad\left\|\mathbb{E}\left[\sum_{i, j} \boldsymbol{X}_{i, j} \boldsymbol{X}_{i, j}^{\top}\right]\right\| \leq \frac{n}{p} \max _{i, j}\left(M_{i, j}^{\star}\right)^{2} \lesssim \frac{\log ^{2} n}{n p} \quad \text { (check) }
\end{aligned}
$$

Similar bounds hold for $\left\|\mathbb{E}\left[\sum_{i, j} \boldsymbol{X}_{i, j}^{\top} \boldsymbol{X}_{i, j}\right]\right\|$. Therefore,

$$
v:=\max \left\{\left\|\mathbb{E}\left[\sum_{i, j} \boldsymbol{X}_{i, j} \boldsymbol{X}_{i, j}^{\top}\right]\right\|,\left\|\mathbb{E}\left[\sum_{i, j} \boldsymbol{X}_{i, j}^{\top} \boldsymbol{X}_{i, j}\right]\right\|\right\} \lesssim \frac{\log ^{2} n}{n p}
$$

Proof of inequality (5.4) (cont.)

Take the matrix Bernstein inequality to yield: if $p \gg\left(\log ^{3} n\right) / n$, then

$$
\left\|\boldsymbol{M}-\boldsymbol{M}^{\star}\right\| \lesssim \sqrt{v \log n}+B \log n \asymp \sqrt{\frac{\log ^{3} n}{n p}} \ll 1
$$

Ranking from pairwise comparisons

Ranking from pairwise comparisons

pairwise comparisons for ranking tennis players
figure credit: Bozóki, Csató, Temesi

Bradley-Terry-Luce (logistic) model

- n items to be ranked
- assign a latent positive score $\left\{w_{i}^{\star}\right\}_{1 \leq i \leq n}$ to each item, so that item $i \succ$ item j if $w_{i}^{\star}>w_{j}^{\star}$
- each pair of items (i, j) is compared independently

$$
\mathbb{P}\{\text { item } j \text { beats item } i\}=\frac{w_{j}^{\star}}{w_{i}^{\star}+w_{j}^{\star}}
$$

Bradley-Terry-Luce (logistic) model

- n items to be ranked
- assign a latent positive score $\left\{w_{i}^{\star}\right\}_{1 \leq i \leq n}$ to each item, so that

$$
\text { item } i \succ \text { item } j \text { if } \quad w_{i}^{\star}>w_{j}^{\star}
$$

- each pair of items (i, j) is compared independently

$$
y_{i, j} \stackrel{\text { ind. }}{=} \begin{cases}1, & \text { with prob. } \frac{w_{j}^{\star}}{w_{i}^{\star}+w_{j}^{\star}} \\ 0, & \text { else }\end{cases}
$$

- intermediate goal: estimate score vector \boldsymbol{w}^{\star} (up to scaling)

Spectral ranking

1. identify key matrix \boldsymbol{P}^{\star} —probability transition matrix

$$
P_{i, j}^{\star}= \begin{cases}\frac{1}{n} \cdot \frac{w_{j}^{\star}}{w_{i}^{\star}+w_{j}^{\star}}, & \text { if } i \neq j \\ 1-\sum_{l: l \neq i} P_{i, l}^{\star}, & \text { if } i=j\end{cases}
$$

Rationale:

- \boldsymbol{P}^{\star} obeys

$$
w_{i}^{\star} P_{i, j}^{\star}=w_{j}^{\star} P_{j, i}^{\star} \quad \text { (detailed balance) }
$$

- Thus, the stationary distribution $\boldsymbol{\pi}^{\star}$ of \boldsymbol{P}^{\star} obeys

$$
\boldsymbol{\pi}^{\star}=\frac{1}{\sum_{l} w_{l}^{\star}} \boldsymbol{w}^{\star} \quad \text { (reveals true scores) }
$$

Spectral ranking

2. construct a surrogate matrix \boldsymbol{P} obeying

$$
P_{i, j}= \begin{cases}\frac{1}{n} y_{i, j}, & \text { if } i \neq j \\ 1-\sum_{l: l \neq i} P_{i, l}, & \text { if } i=j\end{cases}
$$

3. return leading left eigenvector $\boldsymbol{\pi}$ of \boldsymbol{P} as score estimate
— closely related to PageRank

Analysis of spectral ranking

Apply our perturbation bound to see

$$
\left\|\boldsymbol{\pi}-\boldsymbol{\pi}^{\star}\right\|_{\boldsymbol{\pi}^{\star}} \leq \frac{\left\|\boldsymbol{\pi}^{\star \top} \boldsymbol{E}\right\|_{\boldsymbol{\pi}^{\star}}}{1-\max \left\{\lambda_{2}\left(\boldsymbol{P}^{\star}\right),-\lambda_{n}\left(\boldsymbol{P}^{\star}\right)\right\}-\|\boldsymbol{E}\|_{\boldsymbol{\pi}^{\star}}}
$$

provided that

$$
\begin{equation*}
1-\max \left\{\lambda_{2}\left(\boldsymbol{P}^{\star}\right),-\lambda_{n}\left(\boldsymbol{P}^{\star}\right)\right\}-\|\boldsymbol{E}\|_{\boldsymbol{\pi}^{\star}}>0 \tag{5.5}
\end{equation*}
$$

Analysis of spectral ranking

Apply our perturbation bound to see

$$
\left\|\boldsymbol{\pi}-\boldsymbol{\pi}^{\star}\right\|_{\boldsymbol{\pi}^{\star}} \leq \frac{\left\|\boldsymbol{\pi}^{\star \top} \boldsymbol{E}\right\|_{\boldsymbol{\pi}^{\star}}}{1-\max \left\{\lambda_{2}\left(\boldsymbol{P}^{\star}\right),-\lambda_{n}\left(\boldsymbol{P}^{\star}\right)\right\}-\|\boldsymbol{E}\|_{\boldsymbol{\pi}^{\star}}}
$$

provided that

$$
\begin{equation*}
1-\max \left\{\lambda_{2}\left(\boldsymbol{P}^{\star}\right),-\lambda_{n}\left(\boldsymbol{P}^{\star}\right)\right\}-\|\boldsymbol{E}\|_{\boldsymbol{\pi}^{\star}}>0 \tag{5.5}
\end{equation*}
$$

- need to understand spectral gap and noise size

Spectral gap of Markov chain

Define condition number

$$
\kappa:=\frac{\max _{1 \leq i \leq n} w_{i}^{\star}}{\min _{1 \leq i \leq n} w_{i}^{\star}}
$$

Lemma 5.3

It follows that

$$
1-\max \left\{\lambda_{2}\left(\boldsymbol{P}^{\star}\right),-\lambda_{n}\left(\boldsymbol{P}^{\star}\right)\right\} \geq \frac{1}{2 \kappa^{2}}
$$

- We omit the proof; it's based on comparison between two reversible Markov chains

Bound $\|E\|_{\pi^{\star}}$

Recall that $\boldsymbol{E}:=\boldsymbol{P}-\boldsymbol{P}^{\star}$

Lemma 5.4

With probability at least $1-O\left(n^{-8}\right)$,

$$
\|\boldsymbol{E}\|_{\boldsymbol{\pi}^{\star}} \leq \sqrt{\kappa}\|\boldsymbol{E}\| \lesssim \sqrt{\frac{\kappa \log n}{n}}
$$

Analysis of spectral ranking (cont.)

Recall perturbation bound

$$
\begin{aligned}
\left\|\boldsymbol{\pi}-\boldsymbol{\pi}^{\star}\right\|_{\boldsymbol{\pi}^{\star}} & \leq \frac{\left\|\boldsymbol{\pi}^{\star \top} \boldsymbol{E}\right\|_{\boldsymbol{\pi}^{\star}}}{1-\max \left\{\lambda_{2}\left(\boldsymbol{P}^{\star}\right),-\lambda_{n}\left(\boldsymbol{P}^{\star}\right)\right\}-\|\boldsymbol{E}\|_{\boldsymbol{\pi}^{\star}}} \\
& \left.\leq 4 \kappa^{2}\left\|\boldsymbol{\pi}^{\star \top} \boldsymbol{E}\right\|_{\boldsymbol{\pi}^{\star}} \quad \text { (provided that } n \gg \kappa^{5} \log n\right)
\end{aligned}
$$

Note that for any \boldsymbol{v}, one has

$$
\|\boldsymbol{v}\|_{\boldsymbol{\pi}^{\star}} \leq \sqrt{\pi_{\max }^{\star}}\|\boldsymbol{v}\|_{2}, \quad \text { and } \quad\|\boldsymbol{v}\|_{2} \leq \frac{1}{\sqrt{\pi_{\min }^{\star}}}\|\boldsymbol{v}\|_{\boldsymbol{\pi}^{\star}}
$$

As a result, one has

$$
\begin{aligned}
\left\|\boldsymbol{\pi}-\boldsymbol{\pi}^{\star}\right\|_{2} & \leq \frac{1}{\sqrt{\pi_{\min }^{\star}}}\left\|\boldsymbol{\pi}-\boldsymbol{\pi}^{\star}\right\|_{\boldsymbol{\pi}^{\star}} \leq \frac{4 \kappa^{2}}{\sqrt{\pi_{\min }^{\star}}}\left\|\boldsymbol{\pi}^{\star \top} \boldsymbol{E}\right\|_{\boldsymbol{\pi}^{\star}} \\
& \leq 4 \kappa^{2.5}\left\|\boldsymbol{\pi}^{\star \top} \boldsymbol{E}\right\|_{2} \leq 4 \kappa^{2.5}\|\boldsymbol{E}\|\left\|\boldsymbol{\pi}^{\star}\right\|_{2}
\end{aligned}
$$

Proof of Lemma 5.4

By construction of \boldsymbol{P} and \boldsymbol{P}^{\star}, we see that

$$
\begin{equation*}
E_{i, j}=P_{i, j}-P_{i, j}^{\star}=\frac{1}{n}\left(y_{i, j}-\mathbb{E}\left[y_{i, j}\right]\right) \tag{5.6}
\end{equation*}
$$

for any $i \neq j$. In addition, for all $1 \leq i \leq n$, it follows that

$$
\begin{equation*}
E_{i, i}=P_{i, i}-P_{i, i}^{\star}=-\sum_{j: j \neq i} E_{i, j}=-\frac{1}{n} \sum_{j: j \neq i}\left(y_{i, j}-\mathbb{E}\left[y_{i, j}\right]\right) . \tag{5.7}
\end{equation*}
$$

We shall decompose the matrix \boldsymbol{E} into three parts: upper triangular part, diagonal part, and lower triangular part:

$$
\begin{equation*}
\|\boldsymbol{E}\| \leq\left\|\boldsymbol{E}_{\text {upper }}\right\|+\left\|\boldsymbol{E}_{\text {diag }}\right\|+\left\|\boldsymbol{E}_{\text {lower }}\right\| \tag{5.8}
\end{equation*}
$$

- we will upper bound $\left\|\boldsymbol{E}_{\text {upper }}\right\|$

Control $\left\|\boldsymbol{E}_{\text {diag }}\right\|$

Note that

$$
\left.\left\|\boldsymbol{E}_{\mathrm{diag}}\right\|=\max _{1 \leq i \leq n}\left|E_{i, i}\right|=\max _{1 \leq i \leq n} \frac{1}{n} \right\rvert\, \underbrace{\sum_{j: j \neq i}\left(y_{i, j}-\mathbb{E}\left[y_{i, j}\right]\right.}_{=: X_{j}}) \mid
$$

- First, we have $\left|X_{j}\right| \leq 1=: B$
- Second, one has

$$
\sum_{j: j \neq i} \mathbb{E}\left[X_{j}^{2}\right]=\sum_{j: j \neq i} \operatorname{Var}\left(y_{i, j}\right) \leq n=: v
$$

By Bernstein's inequality and union bound, we have w.h.p.

$$
\max _{i}\left|E_{i, i}\right| \lesssim \frac{1}{n} \cdot(\sqrt{v \log n}+B \log n) \asymp \sqrt{\frac{\log n}{n}}
$$

Control $\left\|\boldsymbol{E}_{\text {upper }}\right\|$

First of all, we have

$$
\boldsymbol{E}_{\text {upper }}=\sum_{i<j} E_{i, j} \boldsymbol{e}_{i} \boldsymbol{e}_{j}^{\top}=\sum_{i<j} \underbrace{\frac{1}{n}\left(y_{i, j}-\mathbb{E}\left[y_{i, j}\right]\right) \boldsymbol{e}_{i} \boldsymbol{e}_{j}^{\top}}_{=: \boldsymbol{X}_{i, j}}
$$

Then

- $\left\|\boldsymbol{X}_{i, j}\right\| \leq \frac{1}{n}=: B$
- Since $\operatorname{Var}\left(y_{i, j}\right) \leq 1$, one has $\mathbb{E}\left[\boldsymbol{X}_{i, j} \boldsymbol{X}_{i, j}^{\top}\right] \preceq \frac{1}{n^{2}} \boldsymbol{e}_{i} \boldsymbol{e}_{i}^{\top}$, which gives

$$
\sum_{i<j} \mathbb{E}\left[\boldsymbol{X}_{i, j} \boldsymbol{X}_{i, j}^{\top}\right] \preceq \sum_{i<j} \frac{1}{n^{2}} \boldsymbol{e}_{i} \boldsymbol{e}_{i}^{\top} \preceq \frac{1}{n} \boldsymbol{I}_{n}
$$

Similarly, $\sum_{i<j} \mathbb{E}\left[\boldsymbol{X}_{i, j}^{\top} \boldsymbol{X}_{i, j}\right] \preceq \frac{1}{n} \boldsymbol{I}_{n}$. As a result,

$$
v:=\max \left\{\left\|\sum_{i, j} \mathbb{E}\left[\boldsymbol{X}_{i, j} \boldsymbol{X}_{i, j}^{\top}\right]\right\|,\left\|\sum_{i, j} \mathbb{E}\left[\boldsymbol{X}_{i, j}^{\top} \boldsymbol{X}_{i, j}\right]\right\|\right\} \leq \frac{1}{n}
$$

Control $\left\|\boldsymbol{E}_{\text {upper }}\right\|$ (cont.)

Invoke matrix Bernstein to obtain

$$
\left\|\boldsymbol{E}_{\text {upper }}\right\| \lesssim \sqrt{v \log n}+B \log n \asymp \sqrt{\frac{\log n}{n}}
$$

- same bound holds for $\left\|\boldsymbol{E}_{\text {lower }}\right\|$

Putting pieces together

Assuming $\kappa=O(1)$, we have

$$
\left\|\boldsymbol{\pi}-\boldsymbol{\pi}^{\star}\right\|_{2} \lesssim \sqrt{\frac{\log n}{n}}\left\|\boldsymbol{\pi}^{\star}\right\|_{2}
$$

- vanishing relative error when n goes to infinity
- optimal error up to a log factor
- Negahban, Oh, Shah '16, Chen, Fan, Ma, Wang '19

