STAT 37797: Mathematics of Data Science

Spectral methods: $\ell_{2, \infty}$ perturbation theory

Cong Ma
University of Chicago, Autumn 2021

Revisit stochastic block model

\mathcal{G}

- Community membership vector

$$
x_{1}^{\star}=\cdots=x_{n / 2}^{\star}=1 ; x_{n / 2+1}^{\star}=\cdots=x_{n}^{\star}=-1
$$

- observe a graph \mathcal{G} (assuming $p>q$)

$$
(i, j) \in \mathcal{G} \text { with prob. } \begin{cases}p, & \text { if } x_{i}=x_{j} \\ q, & \text { else }\end{cases}
$$

- Goal: recover community memberships $\pm \boldsymbol{x}^{\star}$

Revisit spectral clustering

1. computing the leading eigenvector $\boldsymbol{u}=\left[u_{i}\right]_{1 \leq i \leq n}$ of $\boldsymbol{A}-\frac{p+q}{2} \mathbf{1 1}^{\top}$
2. rounding: output $x_{i}= \begin{cases}1, & \text { if } u_{i} \geq 0 \\ -1, & \text { if } u_{i}<0\end{cases}$

Almost exact recovery

$$
\frac{p-q}{\sqrt{p}} \gg \sqrt{\frac{\log n}{n}} \Longrightarrow \quad \text { almost exact recovery }
$$

- Almost exact recovery means

$$
\min \left\{\frac{1}{n} \sum_{i=1}^{n} \mathbb{1}\left\{x_{i} \neq x_{i}^{\star}\right\}, \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}\left\{x_{i} \neq-x_{i}^{\star}\right\}\right\}=o(1)
$$

Empirical performance of spectral clustering

ℓ_{2} perturbation theory alone cannot explain exact recovery guarantees

- call for fine-grained analysis

Reverse engineering

Spectral clustering uses signs of \boldsymbol{u} to cluster nodes

Reverse engineering

Spectral clustering uses signs of \boldsymbol{u} to cluster nodes

It achieves exact recovery iff $u_{i} u_{i}^{\star}>0$ for all i

Reverse engineering

Spectral clustering uses signs of \boldsymbol{u} to cluster nodes

It achieves exact recovery iff $u_{i} u_{i}^{\star}>0$ for all i

A sufficient condition is* $\left\|\boldsymbol{u}-\boldsymbol{u}^{\star}\right\|_{\infty}<1 / \sqrt{n}$

Reverse engineering

Spectral clustering uses signs of \boldsymbol{u} to cluster nodes

It achieves exact recovery iff $u_{i} u_{i}^{\star}>0$ for all i

A sufficient condition is ${ }^{*}\left\|\boldsymbol{u}-\boldsymbol{u}^{\star}\right\|_{\infty}<1 / \sqrt{n}$

Need ℓ_{∞} perturbation theory

Outline

- An illustrative example: rank-1 matrix denoising
- General ℓ_{∞} perturbation theory: symmetric rank-1 case
- Application: exact recovery in community detection
- General $\ell_{2, \infty}$ perturbation theory: rank-r case
- Application: entrywise error in matrix completion

An illustrative example: rank-1 matrix denoising

Setup and algorithm

- Groundtruth: $\boldsymbol{M}^{\star}=\lambda^{\star} \boldsymbol{u}^{\star} \boldsymbol{u}^{\star \top} \in \mathbb{R}^{n \times n}$, with $\lambda^{\star}>0$
- Observation: $\boldsymbol{M}=\boldsymbol{M}^{\star}+\boldsymbol{E}$, where \boldsymbol{E} is symmetric, and its upper triangular part comprises of i.i.d. $\mathcal{N}\left(0, \sigma^{2}\right)$ entries
- Estimate \boldsymbol{u}^{\star} using \boldsymbol{u}, leading eigenvector of \boldsymbol{M}
- Goal: characterize entrywise errror

$$
\operatorname{dist}_{\infty}\left(\boldsymbol{u}, \boldsymbol{u}^{\star}\right):=\min \left\{\left\|\boldsymbol{u}-\boldsymbol{u}^{\star}\right\|_{\infty},\left\|\boldsymbol{u}+\boldsymbol{u}^{\star}\right\|_{\infty}\right\}
$$

ℓ_{2} guarantees

We start with characterizing noise size

Lemma 6.1

Assume symmetric Gaussian noise model. With high prob., one has

$$
\|\boldsymbol{E}\| \leq 5 \sigma \sqrt{n}
$$

This in conjunction with Davis-Kahan's $\sin \Theta$ theorem leads to:

$$
\operatorname{dist}\left(\boldsymbol{u}, \boldsymbol{u}^{\star}\right) \leq \frac{2\|\boldsymbol{E}\|}{\lambda^{\star}} \leq \frac{10 \sigma \sqrt{n}}{\lambda^{\star}}
$$

as long as $\sigma \sqrt{n} \leq \frac{1-1 / \sqrt{2}}{5} \lambda^{\star}$ so that $\|\boldsymbol{E}\| \leq(1-1 / \sqrt{2}) \lambda^{\star}$ $-i m p l i e s \operatorname{dist}_{\infty}\left(\boldsymbol{u}, \boldsymbol{u}^{\star}\right) \leq \operatorname{dist}\left(\boldsymbol{u}, \boldsymbol{u}^{\star}\right) \lesssim \frac{\sigma \sqrt{n}}{\lambda}$

Incoherence

Definition 6.2

Fix a unit vector $\boldsymbol{u}^{\star} \in \mathbb{R}^{n}$. Define its incoherence to be

$$
\mu:=n\left\|\boldsymbol{u}^{\star}\right\|_{\infty}^{2}
$$

- Range of possible values of $\mu: 1 \leq \mu \leq n$
- Two extremes: $\boldsymbol{u}^{\star}=\boldsymbol{e}_{1}$, and $\boldsymbol{u}^{\star}=(1 / \sqrt{n}) \cdot \mathbf{1}_{n}$
- Small μ indicates energy of eigenvector is spread across different entries
- Consider SBM and random Gaussian vectors

ℓ_{∞} guarantees for matrix denoising

Theorem 6.3

Suppose that $\sigma \sqrt{n} \leq c_{0} \lambda^{\star}$ for some sufficiently small constant $c_{0}>0$. Then whp., we have

$$
\operatorname{dist}_{\infty}\left(\boldsymbol{u}, \boldsymbol{u}^{\star}\right) \lesssim \frac{\sigma(\sqrt{\log n}+\sqrt{\mu})}{\lambda^{\star}}
$$

- When $\mu \lesssim \log n$ (i.e., no entries are significantly larger than average), our bound reads

$$
\operatorname{dist}_{\infty}\left(\boldsymbol{u}, \boldsymbol{u}^{\star}\right) \lesssim \frac{\sigma \sqrt{\log n}}{\lambda^{\star}}
$$

- Much tighter than ℓ_{2} bound: $\sqrt{n / \log n}$ times smaller

Technical hurdle: dependency

We would like to understand u_{l}. Since \boldsymbol{u} is eigenvector of \boldsymbol{M}, we have

$$
\boldsymbol{M u}=\lambda \boldsymbol{u}
$$

which yields

$$
u_{l}=\frac{1}{\lambda}[\boldsymbol{M}]_{l,:}: \boldsymbol{u}=\frac{1}{\lambda}\left[\boldsymbol{M}^{\star}+\boldsymbol{E}\right]_{l,:} \boldsymbol{u}
$$

\boldsymbol{u} is dependent on \boldsymbol{E}; analyzing $\left[\boldsymbol{M}^{\star}+\boldsymbol{E}\right]_{l,:} \boldsymbol{u}$ is challenging
-how to deal with such dependency

An independent proxy

Recall our focus is

$$
\left[\boldsymbol{M}^{\star}+\boldsymbol{E}\right]_{l,:} \boldsymbol{u}
$$

Suppose we have a proxy $\boldsymbol{u}^{(l)}$ which is independent of $[\boldsymbol{E}]_{l, \text { : }}$, then

$$
\left[\boldsymbol{M}^{\star}+\boldsymbol{E}\right]_{l,:} \boldsymbol{u}=\left[\boldsymbol{M}^{\star}+\boldsymbol{E}\right]_{l,:} \boldsymbol{u}^{(l)}+\left[\boldsymbol{M}^{\star}+\boldsymbol{E}\right]_{l,:}\left(\boldsymbol{u}-\boldsymbol{u}^{(l)}\right)
$$

- Independence between $\boldsymbol{u}^{(l)}$ and $[\boldsymbol{E}]_{l, \text { : }}$
- Proximity between $\boldsymbol{u}^{(l)}$ and \boldsymbol{u}

Leave-one-out estimates

For each $1 \leq l \leq n$, construct an auxiliary matrix $\boldsymbol{M}^{(l)}$

$$
\boldsymbol{M}^{(l)}:=\lambda^{\star} \boldsymbol{u}^{\star} \boldsymbol{u}^{\star \top}+\boldsymbol{E}^{(l)},
$$

where the noise matrix $\boldsymbol{E}^{(l)}$ is generated according to

$$
E_{i, j}^{(l)}:= \begin{cases}E_{i, j}, & \text { if } i \neq l \text { and } j \neq l, \\ 0, & \text { else. }\end{cases}
$$

M

Leave-one-out estimates (cont.)

For each $1 \leq l \leq n$, construct an auxiliary matrix $\boldsymbol{M}^{(l)}$

$$
\boldsymbol{M}^{(l)}:=\lambda^{\star} \boldsymbol{u}^{\star} \boldsymbol{u}^{\star \top}+\boldsymbol{E}^{(l)},
$$

where the noise matrix $\boldsymbol{E}^{(l)}$ is generated according to

$$
E_{i, j}^{(l)}:= \begin{cases}E_{i, j}, & \text { if } i \neq l \text { and } j \neq l, \\ 0, & \text { else. }\end{cases}
$$

Let $\lambda^{(l)}$ and $\boldsymbol{u}^{(l)}$ denote respectively leading eigenvalue and leading eigenvector of $\boldsymbol{M}^{(l)}$
$-\boldsymbol{u}^{(l)}$ is independent of $[\boldsymbol{E}]_{l, \text { : }}$

Intuition

- Since $\boldsymbol{u}^{(l)}$ is obtained by dropping only a tiny fraction of data, we expect $\boldsymbol{u}^{(l)}$ to be extremely close to \boldsymbol{u}, i.e., $\boldsymbol{u} \approx \pm \boldsymbol{u}^{(l)}$
- By construction,

$$
\begin{aligned}
u_{l}^{(l)} & =\frac{1}{\lambda^{(l)}} \boldsymbol{M}_{l, \cdot}^{(l)} \boldsymbol{u}^{(l)}=\frac{1}{\lambda^{(l)}} \boldsymbol{M}_{l, \cdot}^{\star} \boldsymbol{u}^{(l)}=\frac{\lambda^{\star}}{\lambda^{(l)}} u_{l}^{\star} \boldsymbol{u}^{\star \top} \boldsymbol{u}^{(l)} \\
& \approx \pm u_{l}^{\star} .
\end{aligned}
$$

Proof of Theorem 6.3

What we have learned from ℓ_{2} analysis

$$
\begin{aligned}
\|\boldsymbol{E}\| & \leq 5 \sigma \sqrt{n} & \boldsymbol{E}^{(l)} \| & \leq\|\boldsymbol{E}\| \leq 5 \sigma \sqrt{n} \\
\operatorname{dist}\left(\boldsymbol{u}, \boldsymbol{u}^{\star}\right) & \leq \frac{10 \sigma \sqrt{n}}{\lambda^{\star}} & \operatorname{dist}\left(\boldsymbol{u}^{(l)}, \boldsymbol{u}^{\star}\right) & \leq \frac{10 \sigma \sqrt{n}}{\lambda^{\star}} \\
\left|\lambda-\lambda^{\star}\right| & \leq 5 \sigma \sqrt{n} & \left|\lambda^{(l)}-\lambda^{\star}\right| & \leq 5 \sigma \sqrt{n} \\
\max _{j: j \geq 2}\left|\lambda_{j}(\boldsymbol{M})\right| & \leq 5 \sigma \sqrt{n} & \max _{j: j \geq 2}\left|\lambda_{j}\left(\boldsymbol{M}^{(l)}\right)\right| & \leq 5 \sigma \sqrt{n}
\end{aligned}
$$

Addressing ambiguity

Assume WLOG,

$$
\begin{aligned}
\left\|\boldsymbol{u}-\boldsymbol{u}^{\star}\right\|_{2} & =\operatorname{dist}\left(\boldsymbol{u}, \boldsymbol{u}^{\star}\right) \\
\left\|\boldsymbol{u}^{(l)}-\boldsymbol{u}^{\star}\right\|_{2} & =\operatorname{dist}\left(\boldsymbol{u}^{(l)}, \boldsymbol{u}^{\star}\right), \quad 1 \leq l \leq n
\end{aligned}
$$

A useful byproduct: if $20 \sigma \sqrt{n}<\lambda^{\star}$, then one necessarily has

$$
\left\|\boldsymbol{u}-\boldsymbol{u}^{(l)}\right\|_{2}=\operatorname{dist}\left(\boldsymbol{u}, \boldsymbol{u}^{(l)}\right), \quad 1 \leq l \leq n
$$

—check this

Bounding $\left\|\boldsymbol{u}-\boldsymbol{u}^{(l)}\right\|_{2}$

Key: view \boldsymbol{M} as perturbation of $\boldsymbol{M}^{(l)}$; apply "sharper" version of Davis-Kahan

$$
\left\|\boldsymbol{u}-\boldsymbol{u}^{(l)}\right\|_{2} \leq \frac{2\left\|\left(\boldsymbol{M}-\boldsymbol{M}^{(l)}\right) \boldsymbol{u}^{(l)}\right\|_{2}}{\lambda^{(l)}-\max _{j \geq 2}\left|\lambda_{j}\left(\boldsymbol{M}^{(l)}\right)\right|} \leq \frac{4\left\|\left(\boldsymbol{M}-\boldsymbol{M}^{(l)}\right) \boldsymbol{u}^{(l)}\right\|_{2}}{\lambda^{\star}}
$$

as long as

$$
\begin{aligned}
&\left\|\boldsymbol{M}-\boldsymbol{M}^{(l)}\right\| \leq(1-1 / \sqrt{2})\left(\lambda^{(l)}-\max _{j \geq 2}\left|\lambda_{j}\left(\boldsymbol{M}^{(l)}\right)\right|\right), \\
& \lambda^{(l)}-\max _{j \geq 2}\left|\lambda_{j}\left(\boldsymbol{M}^{(l)}\right)\right| \geq \lambda^{\star} / 2
\end{aligned}
$$

Bounding $\left\|\left(\boldsymbol{M}-\boldsymbol{M}^{(l)}\right) \boldsymbol{u}^{(l)}\right\|_{2}$

By design,

$$
\left(\boldsymbol{M}-\boldsymbol{M}^{(l)}\right) \boldsymbol{u}^{(l)}=\boldsymbol{e}_{l} \boldsymbol{E}_{l,,} \boldsymbol{u}^{(l)}+u_{l}^{(l)}\left(\boldsymbol{E}_{\cdot, l}-E_{l, l} \boldsymbol{e}_{l}\right)
$$

which together with triangle inequality yields

$$
\begin{aligned}
& \left\|\left(\boldsymbol{M}-\boldsymbol{M}^{(l)}\right) \boldsymbol{u}^{(l)}\right\|_{2} \leq\left|\boldsymbol{E}_{l, \cdot} \boldsymbol{u}^{(l)}\right|+\left\|\boldsymbol{E}_{\cdot, l}\right\|_{2} \cdot\left|u_{l}^{(l)}\right| \\
& \quad \leq 5 \sigma \sqrt{\log n}+\left\|\boldsymbol{E}_{\cdot, l}\right\|_{2}\left(\left|u_{l}\right|+\left\|\boldsymbol{u}-\boldsymbol{u}^{(l)}\right\|_{\infty}\right) \\
& \quad \leq 5 \sigma \sqrt{\log n}+5 \sigma \sqrt{n}\|\boldsymbol{u}\|_{\infty}+5 \sigma \sqrt{n}\left\|\boldsymbol{u}-\boldsymbol{u}^{(l)}\right\|_{2}
\end{aligned}
$$

Bounding $\left\|\boldsymbol{u}-\boldsymbol{u}^{(l)}\right\|_{2}$ (cont.)

Combining previous bounds, we arrive at

$$
\begin{aligned}
\left\|\boldsymbol{u}-\boldsymbol{u}^{(l)}\right\|_{2} & \leq \frac{20 \sigma \sqrt{\log n}+20 \sigma \sqrt{n}\|\boldsymbol{u}\|_{\infty}+20 \sigma \sqrt{n}\left\|\boldsymbol{u}-\boldsymbol{u}^{(l)}\right\|_{2}}{\lambda^{\star}} \\
& \leq \frac{20 \sigma \sqrt{\log n}+20 \sigma \sqrt{n}\|\boldsymbol{u}\|_{\infty}}{\lambda^{\star}}+\frac{1}{2}\left\|\boldsymbol{u}-\boldsymbol{u}^{(l)}\right\|_{2}
\end{aligned}
$$

provided that $40 \sigma \sqrt{n} \leq \lambda^{\star}$
Rearranging terms and taking the union bound, we demonstrate that whp.,

$$
\left\|\boldsymbol{u}-\boldsymbol{u}^{(l)}\right\|_{2} \leq \frac{40 \sigma \sqrt{\log n}+40 \sigma \sqrt{n}\|\boldsymbol{u}\|_{\infty}}{\lambda^{\star}} \quad 1 \leq l \leq n
$$

Analyzing leave-one-out iterates

Recall that

$$
u_{l}^{(l)}=\frac{1}{\lambda^{(l)}} \boldsymbol{M}_{l, \cdot}^{(l)} \boldsymbol{u}^{(l)}=\frac{1}{\lambda^{(l)}} \boldsymbol{M}_{l, \cdot}^{\star} \boldsymbol{u}^{(l)}=\frac{\lambda^{\star}}{\lambda^{(l)}} u_{l}^{\star} \boldsymbol{u}^{\star \top} \boldsymbol{u}^{(l)}
$$

This implies

$$
\begin{aligned}
u_{l}^{(l)}-u_{l}^{\star} & =u_{l}^{\star}\left(\frac{\lambda^{\star}}{\lambda^{(l)}} \boldsymbol{u}^{\star \top} \boldsymbol{u}^{(l)}-\boldsymbol{u}^{\star \top} \boldsymbol{u}^{\star}\right) \\
& =u_{l}^{\star}\left(\frac{\lambda^{\star}-\lambda^{(l)}}{\lambda^{(l)}} \boldsymbol{u}^{\star \top} \boldsymbol{u}^{(l)}\right)+u_{l}^{\star} \boldsymbol{u}^{\star \top}\left(\boldsymbol{u}^{(l)}-\boldsymbol{u}^{\star}\right)
\end{aligned}
$$

Analyzing leave-one-out iterates (cont.)

Triangle inequality gives

$$
\begin{aligned}
\left|u_{l}^{(l)}-u_{l}^{\star}\right| \leq & \left|u_{l}^{\star}\right| \cdot \frac{\left|\lambda^{\star}-\lambda^{(l)}\right|}{\left|\lambda^{(l)}\right|} \cdot\left\|\boldsymbol{u}^{\star}\right\|_{2} \cdot\left\|\boldsymbol{u}^{(l)}\right\|_{2} \\
& +\left|u_{l}^{\star}\right| \cdot\left\|\boldsymbol{u}^{\star}\right\|_{2} \cdot\left\|\boldsymbol{u}^{(l)}-\boldsymbol{u}^{\star}\right\|_{2} \\
\leq & \left|u_{l}^{\star}\right| \cdot \frac{10 \sigma \sqrt{n}}{\lambda^{\star}}+\left|u_{l}^{\star}\right| \cdot \frac{10 \sigma \sqrt{n}}{\lambda^{\star}} \\
\leq & \frac{20 \sigma \sqrt{n}}{\lambda^{\star}}\left\|\boldsymbol{u}^{\star}\right\|_{\infty}
\end{aligned}
$$

Putting pieces together

Now we come to conclude that

$$
\begin{aligned}
\left\|\boldsymbol{u}-\boldsymbol{u}^{\star}\right\|_{\infty} & =\max _{l}\left|u_{l}-u_{l}^{\star}\right| \leq \max _{l}\left\{\left|u_{l}^{(l)}-u_{l}^{\star}\right|+\left\|\boldsymbol{u}-\boldsymbol{u}^{(l)}\right\|_{2}\right\} \\
& \leq \frac{20 \sigma \sqrt{n}}{\lambda^{\star}}\left\|\boldsymbol{u}^{\star}\right\|_{\infty}+\frac{40 \sigma \sqrt{\log n}+40 \sigma \sqrt{n}\|\boldsymbol{u}\|_{\infty}}{\lambda^{\star}}
\end{aligned}
$$

One more triangle inequality gives

$$
\left\|\boldsymbol{u}-\boldsymbol{u}^{\star}\right\|_{\infty} \leq \frac{40 \sigma \sqrt{\log n}+60 \sigma \sqrt{n}\left\|\boldsymbol{u}^{\star}\right\|_{\infty}}{\lambda^{\star}}+\frac{1}{2}\left\|\boldsymbol{u}-\boldsymbol{u}^{\star}\right\|_{\infty}
$$

provided that $80 \sigma \sqrt{n} \leq \lambda^{\star}$. Rearranging terms yields
$\left\|\boldsymbol{u}-\boldsymbol{u}^{\star}\right\|_{\infty} \leq \frac{80 \sigma \sqrt{\log n}+120 \sigma \sqrt{n}\left\|\boldsymbol{u}^{\star}\right\|_{\infty}}{\lambda^{\star}}=\frac{80 \sigma \sqrt{\log n}+120 \sigma \sqrt{\mu}}{\lambda^{\star}}$,
where the last identity results from the definition of μ
Spectral methods: $\ell_{2, \infty}$ perturbation theory

General ℓ_{∞} perturbation theory

-symmetric rank-1 case

Setup and notation

Groundtruth: consider a rank-1 psd matrix $\boldsymbol{M}^{\star}=\lambda^{\star} \boldsymbol{u}^{\star} \boldsymbol{u}^{\star}{ }^{\top} \in \mathbb{R}^{n \times n}$ Incoherence:

$$
\mu:=n\left\|\boldsymbol{u}^{\star}\right\|_{\infty}^{2} \quad(1 \leq \mu \leq n)
$$

Observations:

$$
\boldsymbol{M}=\boldsymbol{M}^{\star}+\boldsymbol{E} \in \mathbb{R}^{n \times n}
$$

with \boldsymbol{E} a symmetric noise matrix
Spectral method: return \boldsymbol{u} leading eigenvector of \boldsymbol{M}

Noise assumptions

The entries in the lower triangular part of $\boldsymbol{E}=\left[E_{i, j}\right]_{1 \leq i, j \leq n}$ are independently generated obeying

$$
\mathbb{E}\left[E_{i, j}\right]=0, \quad \mathbb{E}\left[E_{i, j}^{2}\right] \leq \sigma^{2}, \quad\left|E_{i, j}\right| \leq B, \quad \text { for all } i \geq j
$$

Further, assume that

$$
c_{\mathrm{b}}:=\frac{B}{\sigma \sqrt{n /(\mu \log n)}}=O(1)
$$

ℓ_{∞} perturbation theory

Theorem 6.4

With high prob, there exists $z \in\{1,-1\}$ such that

$$
\begin{align*}
\left\|z \boldsymbol{u}-\boldsymbol{u}^{\star}\right\|_{\infty} & \lesssim \frac{\sigma \sqrt{\mu}+\sigma \sqrt{\log n}}{\lambda^{\star}}, \tag{6.3a}\\
\left\|z \boldsymbol{u}-\frac{1}{\lambda^{\star}} \boldsymbol{M} \boldsymbol{u}^{\star}\right\|_{\infty} & \lesssim \frac{\sigma \sqrt{\mu}}{\lambda^{\star}}+\frac{\sigma^{2} \sqrt{n \log n}+\sigma B \sqrt{\mu \log ^{3} n}}{\left(\lambda^{\star}\right)^{2}} \tag{6.3b}
\end{align*}
$$

provided that $\sigma \sqrt{n \log n} \leq c_{\sigma} \lambda^{\star}$ for some sufficiently small constant $c_{\sigma}>0$.

- Delocalization of error

First-order expansion

Chain of approximation

$$
\boldsymbol{u}=\frac{\boldsymbol{M} \boldsymbol{u}}{\lambda} \approx \frac{\boldsymbol{M} \boldsymbol{u}^{\star}}{\lambda^{\star}} \approx \frac{\boldsymbol{M}^{\star} \boldsymbol{u}^{\star}}{\lambda^{\star}}=\boldsymbol{u}^{\star}
$$

- first approximation is much tighter than the second one
- important in certain applications such as SBM

Application: exact recovery in community detection

Exact recovery using spectral method

We consider the case when (why?)

$$
p=\frac{\alpha \log n}{n}, \quad \text { and } \quad q=\frac{\beta \log n}{n}
$$

Theorem 6.5

Fix any constant $\varepsilon>0$. Suppose $\alpha>\beta>0$ are sufficiently large*, and

$$
(\sqrt{\alpha}-\sqrt{\beta})^{2} \geq 2(1+\varepsilon)
$$

With probability $1-o(1)$, spectral method achieves exact recovery.

Optimality of spectral method

It turns out that when

$$
(\sqrt{\alpha}-\sqrt{\beta})^{2} \leq 2(1-\varepsilon)
$$

no method whatsoever can achieve exact recovery

$$
\text { -what's special about }(\sqrt{\alpha}-\sqrt{\beta})^{2} \text { or }(\sqrt{p}-\sqrt{q})^{2} ?
$$

Squared Hellinger distance

Definition 6.6

Consider two distributions P and Q over a finite alphabet \mathcal{Y}. The squared Hellinger distance $\mathrm{H}^{2}(P \| Q)$ between P and Q is defined as

$$
\begin{equation*}
\mathrm{H}^{2}(P \| Q):=\frac{1}{2} \sum_{y \in \mathcal{Y}}(\sqrt{P(y)}-\sqrt{Q(y)})^{2} . \tag{6.4}
\end{equation*}
$$

Consider squared Hellinger distance between $\operatorname{Bern}(p)$ and $\operatorname{Bern}(q)$:

$$
\begin{aligned}
\mathrm{H}^{2}(\operatorname{Bern}(p), \operatorname{Bern}(q)) & :=\frac{1}{2}(\sqrt{p}-\sqrt{q})^{2}+\frac{1}{2}(\sqrt{1-p}-\sqrt{1-q})^{2} \\
& =(1+o(1)) \frac{1}{2}(\sqrt{p}-\sqrt{q})^{2},
\end{aligned}
$$

when $p=o(1)$ and $q=o(1)$

Optimality of spectral method (cont.)

The phase transition phenomenon can then be described as
spectral method works if $\mathrm{H}^{2}(\operatorname{Bern}(p), \operatorname{Bern}(q)) \geq(1+\varepsilon) \frac{\log n}{n}$
no algorithm works if $\mathrm{H}^{2}(\operatorname{Bern}(p), \operatorname{Bern}(q)) \leq(1-\varepsilon) \frac{\log n}{n}$
for an arbitrary small constant $\varepsilon>0$

Fine-grained analysis of spectral clustering

Consider "ground-truth" matrix

$$
M^{\star}:=\mathbb{E}[A]-\frac{p+q}{2} \mathbf{1 1}^{\top}=\frac{p-q}{2}\left[\begin{array}{c}
\mathbf{1} \\
-\mathbf{1}
\end{array}\right]\left[\begin{array}{ll}
\mathbf{1}^{\top} & -\mathbf{1}^{\top}
\end{array}\right],
$$

which obeys

$$
\lambda_{1}\left(\boldsymbol{M}^{\star}\right):=\frac{(p-q) n}{2}, \quad \text { and } \quad \boldsymbol{u}^{\star}:=\frac{1}{\sqrt{n}}\left[\begin{array}{c}
\mathbf{1}_{n / 2} \\
-\mathbf{1}_{n / 2}
\end{array}\right] .
$$

These imply

$$
\begin{aligned}
\lambda^{\star} & =\frac{n(p-q)}{2}, & \mu & =1 \\
B & =1, & \sigma^{2} & \leq \max \{p, q\}=p
\end{aligned}
$$

Invoke ℓ_{∞} perturbation theory

ℓ_{∞} perturbation bound (6.3b) yields

$$
\begin{aligned}
\left\|z \lambda^{\star} \boldsymbol{u}-\boldsymbol{M} \boldsymbol{u}^{\star}\right\|_{\infty} & \lesssim \sigma+\frac{\sigma^{2} \sqrt{n \log n}}{\lambda^{\star}}+\frac{\sigma B \log ^{3 / 2} n}{\lambda^{\star}} \\
& \leq C\left(\sqrt{p}+\frac{p \sqrt{\log n}}{\sqrt{n}(p-q)}+\frac{\sqrt{p} \log ^{3 / 2} n}{n(p-q)}\right)=: \Delta
\end{aligned}
$$

for some constant $C>0$
it boils down to characterizing the entrywise behavior of $\boldsymbol{M} \boldsymbol{u}^{\star}$

Bounding entries in $M u^{\star}$

Lemma 6.7

Suppose that

$$
(\sqrt{\alpha}-\sqrt{\beta})^{2} \geq 2(1+\varepsilon)
$$

for some quantity $\varepsilon>0$. Then with probability exceeding $1-o(1)$, one has
$\boldsymbol{M}_{l,} \boldsymbol{u}^{\star} \geq \frac{\eta \log n}{\sqrt{n}}$ for all $l \leq \frac{n}{2}$ and $\boldsymbol{M}_{l,}, \boldsymbol{u}^{\star} \leq-\frac{\eta \log n}{\sqrt{n}}$ for all $l>\frac{n}{2}$,
where $\eta>0$ obeys $(\sqrt{\alpha}-\sqrt{\beta})^{2}-\eta \log (\alpha / \beta)>2$.

Key message: entries in $\boldsymbol{M} \boldsymbol{u}^{\star}$ are bounded away from 0 with correct sign

Completing the picture

On one hand
$\boldsymbol{M}_{l,}, \boldsymbol{u}^{\star} \geq \frac{\eta \log n}{\sqrt{n}}$ for all $l \leq \frac{n}{2}$ and $\boldsymbol{M}_{l,} \boldsymbol{u}^{\star} \leq-\frac{\eta \log n}{\sqrt{n}}$ for all $l>\frac{n}{2}$
On the other hand

$$
\left\|z \lambda^{\star} \boldsymbol{u}-\boldsymbol{M} \boldsymbol{u}^{\star}\right\|_{\infty} \leq \Delta
$$

In sum, if one can show

$$
\begin{equation*}
\frac{\eta \log n}{\sqrt{n}}>\Delta \tag{6.5}
\end{equation*}
$$

then it follows that

$$
z u_{l} u_{l}^{\star}>0 \quad \text { for all } 1 \leq l \leq n \quad \Longrightarrow \quad \text { exact recovery }
$$

Proof of relation (6.5)

Our goal is to show

$$
\frac{\eta \log n}{\sqrt{n}} \geq C\left(\sqrt{p}+\frac{p \sqrt{\log n}}{\sqrt{n}(p-q)}+\frac{\sqrt{p} \log ^{3 / 2} n}{n(p-q)}\right)
$$

- 1st term: $\sqrt{p} \asymp \sqrt{\frac{\log n}{n}} \ll \frac{\eta \log n}{\sqrt{n}}$
- 2nd term: $\frac{p \sqrt{\log n}}{\sqrt{n}(p-q)} \asymp \sqrt{\frac{\log n}{n}} \ll \frac{\eta \log n}{\sqrt{n}}$
- 3rd term: divide discussion into two cases $\alpha / \beta \leq 2$, and $\alpha / \beta \geq 2$

Compare two sets of Bernoullis

Lemma 6.8

Suppose $\alpha>\beta$, $\left\{W_{i}\right\}_{1 \leq i \leq n / 2}$ are i.i.d. $\operatorname{Bern}\left(\frac{\alpha \log n}{n}\right)$, and $\left\{Z_{i}\right\}_{1 \leq i \leq n / 2}$ are i.i.d. $\operatorname{Bern}\left(\frac{\beta \log n}{n}\right)$, which are independent of W_{i}. For any $t>0$, one has

$$
\mathbb{P}\left(\sum_{i=1}^{n / 2} W_{i}-\sum_{i=1}^{n / 2} Z_{i} \leq t \log n\right) \leq n^{-(\sqrt{a}-\sqrt{b})^{2} / 2+t \log (a / b) / 2}
$$

Proof of Lemma 6.7

Note that $\boldsymbol{M} \boldsymbol{u}^{\star}=\left(\boldsymbol{A}-\frac{p+q}{2} \mathbf{1 1}^{\top}\right) \boldsymbol{u}^{\star}=\boldsymbol{A} \boldsymbol{u}^{\star}$. Hence

$$
\boldsymbol{M}_{1,,} \boldsymbol{u}^{\star}=\boldsymbol{A}_{1,,} \boldsymbol{u}^{\star}=\frac{1}{\sqrt{n}}\left(\sum_{j=1}^{n / 2} A_{1, j}-\sum_{j=n / 2+1}^{n} A_{1, j}\right)
$$

Apply Lemma 6.8 to obtain with probability at least
$1-n^{-(\sqrt{a}-\sqrt{b})^{2} / 2+\eta \log (a / b) / 2}=1-o\left(n^{-1}\right)$

$$
\boldsymbol{M}_{1,:} \boldsymbol{u}^{\star} \geq \frac{\eta \log n}{\sqrt{n}}
$$

Invoke union bound to complete proof

Proof of Lemma 6.8

We apply the Laplace transform method: for any $\lambda<0$

$$
\begin{aligned}
& \mathbb{P}\left(\sum_{i=1}^{n / 2} W_{i}-\sum_{i=1}^{n / 2} Z_{i} \leq t \log n\right) \\
& \quad=\mathbb{P}\left(\exp \left(\lambda\left(\sum_{i=1}^{n / 2} W_{i}-\sum_{i=1}^{n / 2} Z_{i}\right)\right) \geq \exp (\lambda t \log n)\right) \\
& \quad \leq \frac{\mathbb{E}\left[\exp \left(\lambda\left(\sum_{i=1}^{n / 2} W_{i}-\sum_{i=1}^{n / 2} Z_{i}\right)\right)\right]}{\exp (\lambda t \log n)}
\end{aligned}
$$

By independence, one has
$\mathbb{E}\left[\exp \left(\lambda\left(\sum_{i=1}^{n / 2} W_{i}-\sum_{i=1}^{n / 2} Z_{i}\right)\right)\right]=\prod_{i=1}^{n / 2} \mathbb{E}\left[\exp \left(\lambda W_{i}\right)\right] \mathbb{E}\left[\exp \left(-\lambda Z_{i}\right)\right]$

Proof of Lemma 6.8 (cont.)

By definition and using $1+x \leq e^{x}$, one has

$$
\begin{aligned}
\mathbb{E}\left[\exp \left(\lambda W_{i}\right)\right] & =\frac{\alpha \log n}{n} \exp (\lambda)+\left(1-\frac{\alpha \log n}{n}\right) \\
& \leq \exp \left(\frac{\alpha \log n}{n} \exp (\lambda)-\frac{\alpha \log n}{n}\right)
\end{aligned}
$$

Similarly for Z_{i}, one has

$$
\mathbb{E}\left[\exp \left(-\lambda W_{i}\right)\right] \leq \exp \left(\frac{\beta \log n}{n} \exp (-\lambda)-\frac{\beta \log n}{n}\right)
$$

Combine these two to see that

$$
\begin{aligned}
& \mathbb{E}\left[\exp \left(\lambda W_{i}\right)\right] \mathbb{E}\left[\exp \left(-\lambda Z_{i}\right)\right] \\
& \quad \leq \exp \left(\frac{\log n}{n}(\alpha \exp (\lambda)+\beta \exp (-\lambda)-\alpha-\beta)\right)
\end{aligned}
$$

Proof of Lemma 6.8 (cont.)

Combine previous two pages to see

$$
\begin{aligned}
& \log \mathbb{P}\left(\sum_{i=1}^{n / 2} W_{i}-\sum_{i=1}^{n / 2} Z_{i} \leq t \log n\right) \\
& \quad \leq-\lambda t \log n+\frac{n}{2} \frac{\log n}{n}(\alpha \exp (\lambda)+\beta \exp (-\lambda)-\alpha-\beta)
\end{aligned}
$$

Set $\lambda=-\log (\alpha / \beta) / 2$ to obtain
$\alpha \exp (\lambda)+\beta \exp (-\lambda)-\alpha-\beta=\alpha \sqrt{\frac{\beta}{\alpha}}+\beta \sqrt{\frac{\alpha}{\beta}}-\alpha-\beta=-(\sqrt{\alpha}-\sqrt{\beta})^{2}$
and proof is finished

General $\ell_{2, \infty}$ perturbation theory

-rank-r case

Setup and notation

Groundtruth: consider a rank-r matrix $\boldsymbol{M}^{\star}=\boldsymbol{U}^{\star} \boldsymbol{\Sigma}^{\star} \boldsymbol{V}^{\star \top} \in \mathbb{R}^{n_{1} \times n_{2}}$, with singular values $\sigma_{1}^{\star} \geq \sigma_{2}^{\star} \geq \cdots \geq \sigma_{r}^{\star}>0$ (assume $n_{1} \leq n_{2}$)

Two convenient notation:

$$
\kappa:=\frac{\sigma_{1}^{\star}}{\sigma_{r}^{\star}}, \quad n:=n_{1}+n_{2}
$$

Observations:

$$
\boldsymbol{M}=\boldsymbol{M}^{\star}+\boldsymbol{E} \in \mathbb{R}^{n_{1} \times n_{2}}
$$

with \boldsymbol{E} a noise matrix
Spectral method: return $\boldsymbol{U}, \boldsymbol{V}$ where $\boldsymbol{M}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{\top}+\boldsymbol{U}_{\perp} \boldsymbol{\Sigma}_{\perp} \boldsymbol{V}_{\perp}^{\top}$

Noise assumptions

The entries in $\boldsymbol{E}=\left[E_{i, j}\right]_{1 \leq i \leq n_{1}, 1 \leq j \leq n_{2}}$ are independently generated obeying

$$
\mathbb{E}\left[E_{i, j}\right]=0, \quad \mathbb{E}\left[E_{i, j}^{2}\right] \leq \sigma^{2}, \quad\left|E_{i, j}\right| \leq B, \quad \text { for all } i, j
$$

Further, assume that

$$
c_{\mathrm{b}}:=\frac{B}{\sigma \sqrt{n_{1} /(\mu \log n)}}=O(1)
$$

$\ell_{2, \infty}$ distance between \boldsymbol{U} and \boldsymbol{U}^{\star}

Need to take into account rotation ambiguity
—which rotation matrix to use?

Definition 6.9

For any square matrix \boldsymbol{Z} with $\operatorname{SVD} \boldsymbol{Z}=\boldsymbol{U}_{Z} \boldsymbol{\Sigma}_{Z} \boldsymbol{V}_{Z}^{\top}$, define

$$
\begin{equation*}
\operatorname{sgn}(\boldsymbol{Z}):=\boldsymbol{U}_{Z} \boldsymbol{V}_{Z}^{\top} \tag{6.6}
\end{equation*}
$$

to be the matrix sign function of \boldsymbol{Z}.

Use $\operatorname{sgn}\left(\boldsymbol{U}^{\top} \boldsymbol{U}^{\star}\right)$ —solution to procrustes problem, which yields

$$
\left\|\boldsymbol{U} \operatorname{sgn}\left(\boldsymbol{U}^{\top} \boldsymbol{U}^{\star}\right)-\boldsymbol{U}^{\star}\right\|_{2, \infty}
$$

Incoherence of subspace

Definition 6.10

Fix an orthonormal matrix $\boldsymbol{U}^{\star} \in \mathbb{R}^{n \times r}$. Define its incoherence to be

$$
\mu\left(\boldsymbol{U}^{\star}\right):=\frac{n\left\|\boldsymbol{U}^{\star}\right\|_{2, \infty}^{2}}{r}
$$

—recover incoherence of eigenvector when $r=1$

- For $\boldsymbol{M}^{\star}=\boldsymbol{U}^{\star} \boldsymbol{\Sigma}^{\star} \boldsymbol{V}^{\star \top}$, define $\mu\left(\boldsymbol{M}^{\star}\right):=\max \left\{\mu\left(\boldsymbol{U}^{\star}\right), \mu\left(\boldsymbol{V}^{\star}\right)\right\}$

$\ell_{2, \infty}$ perturbation theory

Define $\boldsymbol{H}_{\boldsymbol{U}}:=\boldsymbol{U}^{\top} \boldsymbol{U}^{\star}$ and $\boldsymbol{H}_{\boldsymbol{V}}:=\boldsymbol{V}^{\top} \boldsymbol{V}^{\star}$

Theorem 6.11

With probability at least $1-O\left(n^{-5}\right)$, one has

$$
\begin{gathered}
\max \left\{\left\|\boldsymbol{U} \operatorname{sgn}\left(\boldsymbol{H}_{\boldsymbol{U}}\right)-\boldsymbol{U}^{\star}\right\|_{2, \infty},\left\|\boldsymbol{V} \operatorname{sgn}\left(\boldsymbol{H}_{\boldsymbol{V}}\right)-\boldsymbol{V}^{\star}\right\|_{2, \infty}\right\} \\
\\
\lesssim \frac{\sigma \sqrt{r}\left(\kappa \sqrt{\frac{n_{2}}{n_{1}} \mu}+\sqrt{\log n}\right)}{\sigma_{r}^{\star}},
\end{gathered}
$$

provided that $\sigma \sqrt{n \log n} \leq c_{1} \sigma_{r}^{\star}$ for some sufficiently small constant $c_{1}>0$.

Entrywise reconstruction error

$$
\text { Recall } \boldsymbol{M}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{\top}+\boldsymbol{U}_{\perp} \boldsymbol{\Sigma}_{\perp} \boldsymbol{V}_{\perp}^{\top}
$$

Corollary 6.12

In addition, if $\sigma \kappa \sqrt{n \log n} \leq c_{2} \sigma_{r}^{\star}$ for some small enough constant $c_{2}>0$, then the following holds with probability at least $1-O\left(n^{-5}\right)$:

$$
\left\|\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{\top}-\boldsymbol{M}^{\star}\right\|_{\infty} \lesssim \sigma \kappa^{2} \mu r \sqrt{\frac{\left(n_{2} / n_{1}\right) \log n}{n_{1}}}
$$

De-localization of estimation error

For simplicity, let us consider the case where $\mu, \kappa, n_{2} / n_{1}=O(1)$. Davis-Kahan theorem results in the following ℓ_{2} estimation guarantees

$$
\operatorname{dist}_{F}\left(\boldsymbol{U}, \boldsymbol{U}^{\star}\right) \leq \sqrt{r} \operatorname{dist}\left(\boldsymbol{U}, \boldsymbol{U}^{\star}\right) \lesssim \frac{\sigma \sqrt{n r}}{\sigma_{r}^{\star}}
$$

In comparison, the $\ell_{2, \infty}$ bound derived in Theorem 6.11 simplifies to

$$
\min _{\boldsymbol{R} \in \mathcal{O}^{r \times r}}\left\|\boldsymbol{U} \boldsymbol{R}-\boldsymbol{U}^{\star}\right\|_{2, \infty} \leq\left\|\boldsymbol{U} \operatorname{sgn}(\boldsymbol{H})-\boldsymbol{U}^{\star}\right\|_{2, \infty} \lesssim \frac{\sigma \sqrt{r \log n}}{\sigma_{r}^{\star}}
$$

De-localization of estimation error (cont.)

For the matrix reconstruction error, one has

$$
\left\|\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{\top}-\boldsymbol{M}^{\star}\right\| \leq 2\left\|\boldsymbol{M}-\boldsymbol{M}^{\star}\right\| \lesssim \sigma \sqrt{n}
$$

which implies $\left\|\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{\top}-\boldsymbol{M}^{\star}\right\|_{\mathrm{F}} \lesssim \sigma \sqrt{n r}$

In comparison, one has

$$
\left\|\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{\top}-\boldsymbol{M}^{\star}\right\|_{\infty} \lesssim \sigma r \sqrt{\frac{\log n}{n}}
$$

Application: entrywise error in matrix completion

Low-rank matrix completion

- consider a low-rank matrix $\boldsymbol{M}^{\star}=\boldsymbol{U}^{\star} \boldsymbol{\Sigma}^{\star} \boldsymbol{V}^{\star \top}$
- each entry $M_{i, j}^{\star}$ is observed independently with prob. p
- intermediate goal: estimate $\boldsymbol{U}^{\star}, \boldsymbol{V}^{\star}$

Spectral method for matrix completion

1. identify the key matrix M^{\star}
2. construct surrogate matrix $\boldsymbol{M} \in \mathbb{R}^{n \times n}$ as

$$
M_{i, j}= \begin{cases}\frac{1}{p} M_{i, j}^{\star}, & \text { if } M_{i, j}^{\star} \text { is observed } \\ 0, & \text { else }\end{cases}
$$

- rationale for rescaling: ensures $\mathbb{E}[\boldsymbol{M}]=M^{\star}$

3. compute the rank-r SVD $\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{\top}$ of \boldsymbol{M}, and return $(\boldsymbol{U}, \boldsymbol{\Sigma}, \boldsymbol{V})$

ℓ_{2} guarantees for matrix completion

Theorem 6.13

Suppose that $n_{1} p \geq C_{1} \kappa^{2} \mu r \log n_{2}$ for some sufficiently large constant $C_{1}>0$. Then with probability exceeding $1-O\left(n_{2}^{-10}\right)$,

$$
\max \left\{\operatorname{dist}\left(\boldsymbol{U}, \boldsymbol{U}^{\star}\right), \operatorname{dist}\left(\boldsymbol{V}, \boldsymbol{V}^{\star}\right)\right\} \lesssim \kappa \sqrt{\frac{\mu r \log n_{2}}{n_{1} p}}
$$

- Key: bound $\left\|\boldsymbol{M}-\boldsymbol{M}^{\star}\right\|$ by $\sqrt{\frac{\mu r \log n_{2}}{n_{1} p}}\left\|\boldsymbol{M}^{\star}\right\|$ (homework)

$\ell_{2, \infty}$ guarantees for matrix completion

Theorem 6.14

Suppose that $n_{1} \leq n_{2}$ and $n_{1} p \geq C \kappa^{4} \mu^{2} r^{2} \log n$ for some sufficiently large constant $C>0$. Then with high prob., we have

$$
\begin{aligned}
\max \left\{\left\|\boldsymbol{U} \operatorname{sgn}\left(\boldsymbol{H}_{\boldsymbol{U}}\right)-\boldsymbol{U}^{\star}\right\|_{2, \infty},\right. & \left.\left\|\boldsymbol{V} \operatorname{sgn}\left(\boldsymbol{H}_{\boldsymbol{V}}\right)-\boldsymbol{V}^{\star}\right\|_{2, \infty}\right\} \\
& \leq \kappa^{2} \sqrt{\frac{\mu^{3} r^{3} \log n}{n_{1}^{2} p}} \\
\left\|\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{\top}-\boldsymbol{M}^{\star}\right\|_{\infty} & \lesssim \kappa^{2} \mu^{2} r^{2} \sqrt{\frac{\log n}{n_{1}^{3} p}}\left\|\boldsymbol{M}^{\star}\right\|
\end{aligned}
$$

Proof of Theorem 6.14

Recall our notation $\boldsymbol{E}=\boldsymbol{M}-\boldsymbol{M}^{\star}=p^{-1} \mathcal{P}_{\Omega}\left(\boldsymbol{M}^{\star}\right)-\boldsymbol{M}^{\star}$. It is straightforward to check that \boldsymbol{E} satisfies noise assumptions with

$$
\sigma^{2}:=\frac{\left\|\boldsymbol{M}^{\star}\right\|_{\infty}^{2}}{p}, \quad \text { and } \quad B:=\frac{\left\|\boldsymbol{M}^{\star}\right\|_{\infty}}{p}
$$

In addition, from the relation $B=c_{\mathrm{b}} \sigma \sqrt{n_{1} /(\mu \log n)}$, it is seen that $c_{\mathrm{b}}=O(1)$ holds as long as $n_{1} p \gtrsim \mu \log n$.

With these preparations in place, the claims in Theorem 6.14 follow directly from Theorem 6.11 and

$$
\left\|\boldsymbol{M}^{\star}\right\|_{\infty} \leq \mu r\left\|\boldsymbol{M}^{\star}\right\| / \sqrt{n_{1} n_{2}}
$$

What we have not discussed so far

- More applications of spectral methods
- Uncertainty quantification for spectral estimators
- Precise asymptotic analysis of spectral estimators
- Variants of spectral methods with certain advantages
- ℓ_{p} analysis of spectral methods

