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Revisit stochastic block model

e Community membership vector

X — L= p* f— - * — e = X —
= _xn/2_1’ Tpjoa41 = " = Tn = 1

e observe a graph G (assuming p > q)
D, if €T, = l‘j

(i,7) € G with prob.
q, else

e Goal: recover community memberships +x*
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Reuvisit spectral clustering

= E[A] + A—E[A]

——

rank 2
1. computing the leading eigenvector u = [u;]1<i<p of A — 1#11T
{1, if u; >0

2. rounding: output x; =
&P T 1w <0
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Almost exact recovery

— logn
p q>> g

\/ﬁ n

=—> almost exact recovery

e Almost exact recovery means

min {:L > 1{w; # x:},%z {z; # —xf}} =o(1)
i=1 i=1

Spectral methods: £2, o perturbation theory

6-4



Empirical performance of spectral clustering
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mean difference : §

{5 perturbation theory alone cannot explain exact recovery guarantees |

— call for fine-grained analysis
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Reverse engineering

Spectral clustering uses signs of u to cluster nodes

Spectral methods: £2, o perturbation theory
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Reverse engineering

Spectral clustering uses signs of u to cluster nodes

i}

It achieves exact recovery iff w;u; > 0 for all 4
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Reverse engineering

Spectral clustering uses signs of u to cluster nodes

i}

It achieves exact recovery iff w;u; > 0 for all 4

i}

A sufficient condition is* ||[u — u*|| < 1/4/n
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Reverse engineering

Spectral clustering uses signs of u to cluster nodes

i}

It achieves exact recovery iff w;u; > 0 for all 4

i}

A sufficient condition is* ||[u — u*|| < 1/4/n

i}

Need /., perturbation theory

Spectral methods: £2, o perturbation theory
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Outline

An illustrative example: rank-1 matrix denoising

General £, perturbation theory: symmetric rank-1 case

Application: exact recovery in community detection

General /3 o, perturbation theory: rank-r case

Application: entrywise error in matrix completion

Spectral methods: £2, o perturbation theory
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An illustrative example: rank-1 matrix denoising



Setup and algorithm

Groundtruth: M* = Mu*u*" € R™ ", with \* > 0

Observation: M = M* + E, where E is symmetric, and its
upper triangular part comprises of i.i.d. A’(0,c?) entries

Estimate u* using u, leading eigenvector of M

Goal: characterize entrywise errror

distoo (u, u*) = min {|lu — ©*||c0, [ + v ||oo }

Spectral methods: £2, o perturbation theory
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{5 guarantees

We start with characterizing noise size

Lemma 6.1
Assume symmetric Gaussian noise model. With high prob., one has

IE| < 50vn

This in conjunction with Davis-Kahan's sin ® theorem leads to:

2B| _ 100y

dist(u, u*) < = e

as long as oy/n < %)\* so that | E|| < (1 — 1/V2)\*

— implies dist (u, u*) < dist(u7 u*) N
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Incoherence

Definition 6.2
Fix a unit vector u* € R™. Define its incoherence to be

p=nfut

Range of possible values of u: 1 < pu<n

Two extremes: u* = e, and u* = (1/y/n) - 1,

Small 1 indicates energy of eigenvector is spread across different
entries

Consider SBM and random Gaussian vectors
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(~ guarantees for matrix denoising

Theorem 6.3

Suppose that o+/n < coA* for some sufficiently small constant
co > 0. Then whp., we have

o(y/Iogn + /7)
)\*

disteo (u, u*) <

e When p < logn (i.e., no entries are significantly larger than
average), our bound reads

ov/logn

distoo (u, u*) <
istoo (w, u*) < v

e Much tighter than /2 bound: \/n/logn times smaller
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Technical hurdle: dependency

We would like to understand wu;. Since w is eigenvector of M, we have
Mu = \u,

which yields

(M, u =

1
X , [M* + E]l’;u

> =

u; =

u is dependent on E; analyzing [M* + E];.u is challenging |

—how to deal with such dependency
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An independent proxy

Recall our focus is
[M* + E]l,:u

Suppose we have a proxy u) which is independent of [E];, then

[M* + E); . u=[M*+ E]L:u(l) + [M*+ E);,. (u - u(l)>

e Independence between u") and [EJ; .

e Proximity between u) and u
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Leave-one-out estimates

For each 1 <1 < n, construct an auxiliary matrix MO

MO = urur" + E(l),

where the noise matrix E() is generated according to

Ei,j, if ¢ 7éland ] ;ﬁl?

0 ._

Spectral methods: £2 o perturbation theory

0, else.

leave one
row/column out

1
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2
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H
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Leave-one-out estimates (cont.)

For each 1 <1 < n, construct an auxiliary matrix MO
MO = T + ED,
where the noise matrix E() is generated according to

E(l) o {E@j, if ¢ 7& [ and ] 75 l,

W 0, else.
Let A and u(® denote respectively leading eigenvalue and leading

eigenvector of M®
—u) is independent of [E]; .
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Intuition

e Since u®) is obtained by dropping only a tiny fraction of data,
we expect u®) to be extremely close to u, i.e., u ~ +u®

e By construction,

o_ 1 0
Uy OB
~ tuf

Spectral methods: £2, o perturbation theory
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Proof of Theorem 6.3



What we have learned from /5 analysis

|E| < 50v/n |ED| < | B < 50/
1 1
dist(u,u*) < Oi:/ﬁ dist(u®), u*) < Oi*\/ﬁ
IA—\| < Bovn A — \*| < Bov/n
max [\;(M)| < 50v/n max |\ (MY)| < 50vn
Jig>2 Jig>2
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Addressing ambiguity

Assume WLOG,

lu — w*||e = dist(u, u*),

[u® — ut||, = dist(u®, u*), 1<I<n
A useful byproduct: if 200/ < A*, then one necessarily has
|lw— u(l)H2 = dist(u, u), 1<1<n

——check this
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Bounding ||u — ul||;

Key: view M as perturbation of MO, apply “sharper” version of
Davis-Kahan
2 (M - MD)uO, 4 (M - MD)u®|,
MO —max |2\ (M®)] — A

j=2

= u], <

as long as
IM = MO < (1= 1/v2) (A0 — max [ (MD)]),
J=Z

AD —max [ A (M©)] > A*/2
Jj=2
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Bounding [|(M — MD)ul)|,

By design,
(M - M(l))u(l) = elEL.u(l) + ’U,EI)(E.J - Euel),
which together with triangle inequality yields

1M — MO)uOlf, < |BLu®| + | E |, - |
< 50+/logn + HElH2(‘ul| + [Ju — u(l)HOO)
< 50/logn + 50v/n|ul|« + 5ov/nllu — u?|,
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Bounding ||u — u"||; (cont.)

Combining previous bounds, we arrive at

o), < 200y/Tog 1 + 200 /1| w0 + 200y/n||u — ul),
2 — A*
- 200+/logn + 200 v/n||u||so n
< e

|lu—u

1
=,

provided that 400/n < A\*
Rearranging terms and taking the union bound, we demonstrate that

whp.,

400+/1 40
o/ ogn—i-* ov/nljull l<l<n

Hu’_u(l)HQ < Y
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Analyzing leave-one-out iterates

Recall that
O_ L a0 L a0 AT 0
RS \Olat O A
This implies
) * * A* *T,..(1) *T %
ul —Ul:Ul(W'u, u —Uu 'u/)
A — A0
_ u;( o *Tu(l)) Jruz(u*'l'(u(l) u*)

Spectral methods: £2, o perturbation theory
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Analyzing leave-one-out iterates (cont.)

Triangle inequality gives

3 = X0
X0

[ |l - [l — ]l

100+v/n . 100y
2* + !ul | ' 2\*
< 20 e

) — up| < |up] - et - @ s

< |y -
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Putting pieces together

Now we come to conclude that

||u _ u*H — max |Ul — uﬂ < max {‘ul(l) — uﬂ + Hu — u(l)HQ}
200\FH I 400\/@+400\/EIIUIIoo
)\*

One more triangle inequality gives

< 400+/Togn + 600/n || u*|| 0

-, < =

1
T

provided that 80c+/n < A*. Rearranging terms yields

oo )\* )\*

where the last identity results from the definition of

Spectral methods: £2, o perturbation theory 6-26



General /., perturbation theory
—symmetric rank-1 case



Setup and notation

Groundtruth: consider a rank-1 psd matrix M* = M u*u*’ € R»"

Incoherence:

p=nlulll  (1<p<n)

Observations:
M =M*"+E € R™"
with E a symmetric noise matrix

Spectral method: return u leading eigenvector of M

Spectral methods: £2, o perturbation theory

6-28



Noise assumptions

The entries in the lower triangular part of E = [E; j]1<; j<n are
independently generated obeying

E[Ei;] =0, E[E},]<0? |Ej|<B, foralli>j

Further, assume that

B

%= fogn OV

Spectral methods: £2, o perturbation theory
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(~, perturbation theory

Theorem 6.4
With high prob, there exists z € {1,—1} such that
V1
o — | g TVEE V08T (6.33)
o0 )\*
1 o/ o2y/nlogn + oBy/pulogdn
|zu — FMU*HOO < v )2 (6.3b)

provided that ov/nlogn < c,A* for some sufficiently small constant
ce > 0.

e Delocalization of error

Spectral methods: £2 o perturbation theory 6-30




First-order expansion

Chain of approximation

e first approximation is much tighter than the second one

e important in certain applications such as SBM

Spectral methods: £2, o perturbation theory
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Application: exact recovery in community
detection



Exact recovery using spectral method

We consider the case when (why?)

1 1
p:aogn’ and _Bogn
n

Theorem 6.5

Fix any constant ¢ > 0. Suppose « > 3 > 0 are sufficiently large*,
and

(Va—VB) >2(1+¢e).

With probability 1 — o(1), spectral method achieves exact recovery.

Spectral methods: £2, o perturbation theory 6-33




Optimality of spectral method

It turns out that when

(\F_\/B)2§2(1_5)7

no method whatsoever can achieve exact recovery

—what's special about (v/a — v/B)> or (VP — \/6)2 ?

Spectral methods: £2, o perturbation theory 6-34



Squared Hellinger distance

Definition 6.6

Consider two distributions P and (Q over a finite alphabet ). The
squared Hellinger distance H?(P || Q) between P and @ is defined as

H(PIQ) =33 (VPo) —ew). (69

Consider squared Hellinger distance between Bern(p) and Bern(q):

H? (Bern(p), Bern(q)) = 5 (5 — V@)’ + 3 (VI—p— VI~ q)°
= (14 0(1))5 (VP ~ V),
when p = 0(1) and ¢ = o(1)
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Optimality of spectral method (cont.)

The phase transition phenomenon can then be described as

1
spectral method works if H?(Bern(p), Bern(q)) > (1 +¢) cen

logn

no algorithm works if H*(Bern(p), Bern(q)) < (1 —¢)
n

for an arbitrary small constant € > 0
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Fine-grained analysis of spectral clustering

Consider “ground-truth” matrix

M*::E[A]—erqllT:p_ql 1 Mﬂ -17 |,

2 2 -1
which obeys
— 1 1
A (M7 = (p Q)n d . T n/2 )
T It 7 B
These imply
A — n(p;q)’ =1,
B =1, o < max{p,q} = p

Spectral methods: £2, o perturbation theory 6-37



Invoke /., perturbation theory

ls perturbation bound (6.3b) yields
o%y/nlogn N ocB log3/2n
A* A*
1 log®/% n
§C<\/;E+ pvlogn +\/z3g )::A
vilp—q)  nlp—q)

for some constant C' > 0

[2Au — Mu*||  So+

it boils down to characterizing the entrywise behavior of Mu*

Spectral methods: £2, o perturbation theory
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Bounding entries in Mu”*

Lemma 6.7

Suppose that

(Va—vB)*>2(1+¢)

for some quantity ¢ > 0. Then with probability exceeding 1 — o(1),
one has

1 1
M, u* > nosn for all I < n and M u* < _nhosn for all | > E,

NG -2 T n 2
where 1 > 0 obeys (/o — /B)? — nlog(a/B) > 2

Key message: entries in Mu* are bounded away from 0 with correct
sign
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Completing the picture

On one hand

]
DB o all 1> 2

NG 2

1
M, u* > hiogn forall I < g and M u* < —

vn

On the other hand
|2\ u — Mu*”oo <A
In sum, if one can show

1
”;%” > A (6.5)

then it follows that

zuyuf >0 forall1<l<n = exact recovery
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Proof of relation (6.5)

Our goal is to show

pvlogn

nlogn S C(\/13+

vnooT Vn(p —q)

o Ist term: \/p < \/log” < m
e 2nd term: p\/logn /logn < nlogn

1 3/2
+\/130g n)

n(p — q)

e 3rd term: d|V|de dlscu55|on into two cases o/ <2, and o/ > 2

Spectral methods: £2, o perturbation theory
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Compare two sets of Bernoullis

Lemma 6.8

Suppose o > 3, {Wi}ti1<i<p/2 are i.id. Bern(o‘log"), and {Z;}1<i<n/2
are i.i.d. Bern(mog"), which are independent of W;. For any t > 0,
one has

=1

n/2 n/2
P (Z WZ — Z Z,L < thg n) < n_(\/a—\/l;)2/2+tlog(a/b)/2.

Spectral methods: £2 o perturbation theory 6-42




Proof of Lemma 6.7

Note that Mu* = (A — 22911 T)u* = Au*. Hence

n/2

* * 1 -
M17;u = A17;U = ﬁ (]2:1 A17j — Z ALj)

j=n/2+1
Apply Lemma 6.8 to obtain with probability at least
1 — n~Wa—Vvb)?/2+nlog(a/b)/2 _ 1 _ o(n=1)

nlogn

vn

Ml,:u* Z

Invoke union bound to complete proof

Spectral methods: £2, o perturbation theory



Proof of Lemma 6.8

We apply the Laplace transform method: for any A < 0

n/2 n/2
P (ZVVZ — ZZi < tlogn)
i=1

=1

n/2 n/2
=P (exp ()\ (ZW ZZ)) > exp )\tlogn))

Bl (A (S - T 2) )|

exp (Atlogn)

By independence, one has

n/2 n/2 n/2
[eXP( (ZW ZZ)) = [1Elexp QW) E[exp (—AZ))]

Spectral methods: £2, o perturbation theory 6-44



Proof of Lemma 6.8 (cont.)

By definition and using 1 + =z < e*, one has

1 1
E [exp (AW;)] = a Zgnexp (N + <1 _a Zgn>
1 1
< exp (a ogn exp () — « ogn>
n

Similarly for Z;, one has

n

E [exp (=AW;)] < exp (ﬁl(:bgn exp (—\) — 5logn>

Combine these two to see that
E [exp (A\W})] E [exp (—AZ;)]
< exp (" (aexp (3) + fexp (—X) —a— 5))

Spectral methods: £2, o perturbation theory
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Proof of Lemma 6.8 (cont.)

Combine previous two pages to see

n/2 n/2
log P (ZWZ — ZZZ' < tlogn)

=1 i=1

1
< —Atlogn + g% (avexp (N) + Sexp (—A) —a — )

Set A = —log («/3) /2 to obtain

aexp (A)+pexp (=) —a—pF = a\/g—kﬁ\/g—a—ﬂ = - (\f— \/B)2

and proof is finished
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General /; ,, perturbation theory
—rank-r case



Setup and notation

Groundtruth: consider a rank-r matrix M* = U*X*V*T ¢ R xnz,
with singular values 67 > 0% > .-+ > 0% > 0 (assume n; < ng)

Two convenient notation:

Observations:
M = M*+ E € Rm*n2
with E a noise matrix

Spectral method: return U,V where M =UXV T + ULELVI

Spectral methods: £2, o perturbation theory 6-48



Noise assumptions

The entries in E = [E; jl1<i<n,,1<j<n, are independently generated
obeying

E[Ei;] =0, E[E},]<o? |Ey;|<B, foralli,j

Further, assume that

cp = B =0(1)

o\/n1/(plogn)

Spectral methods: £2, o perturbation theory 6-49



{5 ~, distance between U and U*

Need to take into account rotation ambiguity
—which rotation matrix to use?

Definition 6.9
For any square matrix Z with SVD Z = UZEZVZT, define

sgn(Z) =U,V, (6.6)

to be the matrix sign function of Z.

Use sgn(U TU*)—solution to procrustes problem, which yields

[Usgn(U'U*) — U*||2,00
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Incoherence of subspace

Definition 6.10

Fix an orthonormal matrix U* € R™*". Define its incoherence to be
2

n||U*[3 00

wU”) = —

—recover incoherence of eigenvector when r = 1

o For M* = U*S*V*T, define u(M*) = max{pu(U*), u(V*)}

Spectral methods: £2, o perturbation theory 6-51



{5 ~ perturbation theory

Define Hy =U'U* and Hy =V 'V*

Theorem 6.11

With probability at least 1 — O(n~"), one has

2,00}

max {[|{Usgn(Hy) — U* 2,00, [ Vsgn(Hy) — V*
_ o1k / 72+ /logn)

*
UT

provided that ov/nlogn < cjo} for some sufficiently small constant
c1 > 0.
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Entrywise reconstruction error

Recal M =UXV' +U, =,V

Corollary 6.12

In addition, if ck/nlogn < caoo for some small enough constant
co > 0, then the following holds with probability at least 1 — O(n=°):

(ng/ny)logn

UV — M*| o < or?pur
ni
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De-localization of estimation error

For simplicity, let us consider the case where p, k, no/n1 = O(1).
Davis-Kahan theorem results in the following ¢5 estimation guarantees

distp(U, U*) < /rdist(U,U*) § 22

In comparison, the {3 o, bound derived in Theorem 6.11 simplifies to

_ ov/rlogn

2,00 *
El UT

min |[UR-U*

< T
ReO*r ||2,oo < |Usgn(H) - U™||
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De-localization of estimation error (cont.)

For the matrix reconstruction error, one has
IUSVT — M*|| <2|M — M*|| < ov/n,

which implies |[USV T — M*||g < o/nr

In comparison, one has

1
IUSVT — M*||o < oryf Oi”

Spectral methods: £2, o perturbation theory 6-55



Application: entrywise error in matrix
completion



Low-rank matrix completion

_ - &.. Iﬁ

A Y Y VA _ -
‘_) ? \/ ‘/ ? 2 i3 eoe
\/ 7 ? \/ ? ? ﬂ ? Wkt ? o eoe
F O A S ‘

E ? ? 7 oot ok eee
A Y O
? \/ ? ? \/ ? ?  obht oot ) ? it eee
T v v : L A

figure credit: Candés
e consider a low-rank matrix M* = U*X*V*T

e each entry MZ*] is observed independently with prob. p

¢ intermediate goal: estimate U*, V*
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Spectral method for matrix completion

1. identify the key matrix M*

2. construct surrogate matrix M € R™*™ as

{1M*-, if M*. is observed
L — P 2,7 2,]
27-] -

0, else

o rationale for rescaling: ensures E[M| = M*

3. compute the rank-r SVD UXV' T of M, and return (U, X,V)

Spectral methods: £2, o perturbation theory 6-58



/5 guarantees for matrix completion

Theorem 6.13

Suppose that nip > C1k*urlogng for some sufficiently large

constant Cy > 0. Then with probability exceeding 1 — O(ny '),

1
maX{diSt (U,U*),dist (V,V?) } S ”W'
1

e Key: bound |M — M*|| by ,/%HM*H (homework)

Spectral methods: £2, o perturbation theory
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/5~ guarantees for matrix completion

Theorem 6.14

Suppose that ny < ny and nip > Crk*ur?logn for some sufficiently
large constant C > 0. Then with high prob., we have

max{||Usgn(Hy) — U”|

2,00, [|[Vsgn(Hv) — V7|00 }

[u3r31
SI{Q ,ur2ogn;
nip

5 [logn

3
nip

IUSVT — Mo S w2r M7
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Proof of Theorem 6.14

Recall our notation E = M — M* = p~'Po(M*) — M*. It is
straightforward to check that F satisfies noise assumptions with

M*Z M*
SN 1.7 -SSR

)

p p

In addition, from the relation B = cpo\/n1/(plogn), it is seen that
¢, = O(1) holds as long as n1p 2 plogn.

With these preparations in place, the claims in Theorem 6.14 follow
directly from Theorem 6.11 and

| M*||oo < pr||M*||/y/n1n2

Spectral methods: £2, o perturbation theory 6-61



What we have not discussed so far

More applications of spectral methods

Uncertainty quantification for spectral estimators

Precise asymptotic analysis of spectral estimators

Variants of spectral methods with certain advantages

¢, analysis of spectral methods

Spectral methods: £2, o perturbation theory
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