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Revisit stochastic block model

G

• Community membership vector
x?1 = · · · = x?n/2 = 1; x?n/2+1 = · · · = x?n = −1

• observe a graph G (assuming p > q)

(i, j) ∈ G with prob.
{
p, if xi = xj

q, else

• Goal: recover community memberships ±x?
Spectral methods: `2,∞ perturbation theory 6-2



Revisit spectral clustering

A = E[A]︸ ︷︷ ︸
rank 2

+ A− E [A]

1. computing the leading eigenvector u = [ui]1≤i≤n of A− p+q
2 11>

2. rounding: output xi =
{

1, if ui ≥ 0
−1, if ui < 0
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Almost exact recovery

p− q
√
p
�

√
logn
n

=⇒ almost exact recovery

• Almost exact recovery means

min
{

1
n

n∑
i=1

1
{
xi 6= x?i

}
,

1
n

n∑
i=1

1
{
xi 6= −x?i

}}
= o(1)
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Empirical performance of spectral clustering

1 �
?
A

l,
·u

?
�

p
n
⇣

4
�
?

� l


n 2

� ,
1 �
?
A

l,
·u

?


�
p

n
⇣

4
�
?

� l
>

n 2

�

⇣


4
"�

?

p
n

"


p
n
⇣

4
�
?


n
⇣
/
2
�

1
p

n

P
⇢

1 �
?
A

1
,·u

?


"�


P
⇢ A

1
,·u

?


n
⇣
/
2
�

1
p

n

�


1

n
1
+
�
.

1

n
(p

�
q)

=
o(
")

.
(3

)

H
2 p
,q
�

4
"�

?

n
lo

g
p
(1

�
q)

q(
1
�

p
)
�

2
(1

+
�)

lo
g

n

n

H
2 p
,q
�

⇢ 1
+

�
+

"(
p
�

q)
n

lo
g

n
lo

g
p
(1

�
q)

q(
1
�

p
)

�
2

lo
g

n

n
2 6 4

✓ 1
. .

.
✓ r

3 7 5

A
i,

j
=

(
1
,

if
(i

,j
)

be
lo

ng
s

to
th

e
sa

m
e

gr
ou

p,
0
,

el
se

.

A
af

te
r

co
lu

m
n
/r

ow
p
er

m
u
ta

ti
on

=

"
1

n
/
2
1
> n

/
2

1
n

/
2
1
> n

/
2

#
=

1 2
1

n
1
> n

+
1 2


1

n
/
2

�
1

n
/
2

� h
1
> n

/
2

�
1
> n

/
2

i

A

co
lu

m
n/

ro
w

pe
rm

ut
at

io
n

=


1
1
>

1
1
>

�
=

1 2
1
1
>

+
1 2


1 �
1

� ⇥
1
>

�
1
>

⇤

em
p
ir
ic

al
su

cc
es

s
ra

te
ed

ge
d
en

si
ty

d
i↵

er
en

ce
:
�

2

empirical success rate edge density di↵erence : �

0 0.1 0.2 0.3 0.4 0.5

1

empirical success rate edge density di↵erence : �

0 0.1 0.2 0.3 0.4 0.5

1.0

0.9

0.8

0.7

0.6

1

empirical success rate mean di↵erence : �

0 0.1 0.2 0.3 0.4 0.5

1.0

0.9

0.8

0.7

0.6

1

`2 perturbation theory alone cannot explain exact recovery guarantees

— call for fine-grained analysis
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Reverse engineering

Spectral clustering uses signs of u to cluster nodes

It achieves exact recovery iff uiu
?
i > 0 for all i

A sufficient condition is∗ ‖u− u?‖∞ < 1/
√
n

Need `∞ perturbation theory
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Outline

• An illustrative example: rank-1 matrix denoising

• General `∞ perturbation theory: symmetric rank-1 case

• Application: exact recovery in community detection

• General `2,∞ perturbation theory: rank-r case

• Application: entrywise error in matrix completion
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An illustrative example: rank-1 matrix denoising



Setup and algorithm

• Groundtruth: M? = λ?u?u?> ∈ Rn×n, with λ? > 0

• Observation: M = M? + E, where E is symmetric, and its
upper triangular part comprises of i.i.d. N (0, σ2) entries

• Estimate u? using u, leading eigenvector of M

• Goal: characterize entrywise errror

dist∞
(
u,u?

)
:= min

{
‖u− u?‖∞, ‖u + u?‖∞

}
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`2 guarantees

We start with characterizing noise size

Lemma 6.1
Assume symmetric Gaussian noise model. With high prob., one has

‖E‖ ≤ 5σ
√
n

This in conjunction with Davis-Kahan’s sin Θ theorem leads to:

dist(u,u?) ≤ 2‖E‖
λ?

≤ 10σ
√
n

λ?
,

as long as σ
√
n ≤ 1−1/

√
2

5 λ? so that ‖E‖ ≤ (1− 1/
√

2)λ?

— implies dist∞
(
u,u?

)
≤ dist

(
u,u?

)
. σ

√
n

λ
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Incoherence

Definition 6.2
Fix a unit vector u? ∈ Rn. Define its incoherence to be

µ := n‖u?‖2∞

• Range of possible values of µ: 1 ≤ µ ≤ n
• Two extremes: u? = e1, and u? = (1/

√
n) · 1n

• Small µ indicates energy of eigenvector is spread across different
entries
• Consider SBM and random Gaussian vectors
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`∞ guarantees for matrix denoising

Theorem 6.3

Suppose that σ
√
n ≤ c0λ

? for some sufficiently small constant
c0 > 0. Then whp., we have

dist∞
(
u,u?

)
.
σ(
√

logn+√µ)
λ?

• When µ . logn (i.e., no entries are significantly larger than
average), our bound reads

dist∞
(
u,u?

)
.
σ
√

logn
λ?

• Much tighter than `2 bound:
√
n/ logn times smaller
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Technical hurdle: dependency

We would like to understand ul. Since u is eigenvector of M , we have

Mu = λu,

which yields

ul = 1
λ

[M ]l,:u = 1
λ

[M? + E]l,:u

u is dependent on E; analyzing [M? + E]l,:u is challenging

—how to deal with such dependency
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An independent proxy

Recall our focus is
[M? + E]l,:u

Suppose we have a proxy u(l) which is independent of [E]l,:, then

[M? + E]l,:u = [M? + E]l,:u(l) + [M? + E]l,:
(
u− u(l)

)
• Independence between u(l) and [E]l,:
• Proximity between u(l) and u

Spectral methods: `2,∞ perturbation theory 6-14



Leave-one-out estimates
For each 1 ≤ l ≤ n, construct an auxiliary matrix M (l)

M (l) := λ?u?u?> + E(l),

where the noise matrix E(l) is generated according to

E
(l)
i,j :=

{
Ei,j , if i 6= l and j 6= l,

0, else.
1 2 3 4 l

... · · · n

1

1 2 3 4 l
... · · · n

1

1 2 3 4 l
... · · · n

1

1 2 3 4 l
... · · · n

1

1 2 3 4 l
... · · · n

1

1 2 3 4 l
... · · · n

1

1 2 3 4 l
... · · · n

1

1 2 3 4 l
... · · · n

1

1 2 3 4 l
... · · · n

1

1
2

3
4

l
. . .

··
·

n

1

1
2

3
4

l
. . .

··
·

n

1

1 2 3 4 l
... · · · n

1

1 2 3 4 l
... · · · n

as

M M (l)

1

1 2 3 4 l
... · · · n

as

M M (l)

1

1 2 3 4 l
... · · · n

as

M M (l) leave one row/column out

1

1 2 3 4 l
... · · · n

as

M M (l) leave one row/column out

1
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Leave-one-out estimates (cont.)

For each 1 ≤ l ≤ n, construct an auxiliary matrix M (l)

M (l) := λ?u?u?> + E(l),

where the noise matrix E(l) is generated according to

E
(l)
i,j :=

{
Ei,j , if i 6= l and j 6= l,

0, else.

Let λ(l) and u(l) denote respectively leading eigenvalue and leading
eigenvector of M (l)

—u(l) is independent of [E]l,:
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Intuition

• Since u(l) is obtained by dropping only a tiny fraction of data,
we expect u(l) to be extremely close to u, i.e., u ≈ ±u(l)

• By construction,

u
(l)
l = 1

λ(l)M
(l)
l,· u

(l) = 1
λ(l)M

?
l,·u

(l) = λ?

λ(l)u
?
lu

?>u(l)

≈ ±u?l .

Spectral methods: `2,∞ perturbation theory 6-17



Proof of Theorem 6.3



What we have learned from `2 analysis

‖E‖ ≤ 5σ
√
n ‖E(l)‖ ≤ ‖E‖ ≤ 5σ

√
n

dist(u,u?) ≤ 10σ
√
n

λ?
dist(u(l),u?) ≤ 10σ

√
n

λ?

|λ− λ?| ≤ 5σ
√
n |λ(l) − λ?| ≤ 5σ

√
n

max
j:j≥2

|λj(M)| ≤ 5σ
√
n max

j:j≥2
|λj(M (l))| ≤ 5σ

√
n
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Addressing ambiguity

Assume WLOG,

‖u− u?‖2 = dist(u,u?),∥∥u(l) − u?
∥∥

2 = dist(u(l),u?), 1 ≤ l ≤ n

A useful byproduct: if 20σ
√
n < λ?, then one necessarily has∥∥u− u(l)∥∥

2 = dist
(
u,u(l)), 1 ≤ l ≤ n

—check this

Spectral methods: `2,∞ perturbation theory 6-20



Bounding ‖u− u(l)‖2

Key: view M as perturbation of M (l); apply “sharper” version of
Davis-Kahan

∥∥u− u(l)∥∥
2 ≤

2‖
(
M −M (l))u(l)‖2

λ(l) −max
j≥2

∣∣λj(M (l))∣∣ ≤ 4‖
(
M −M (l))u(l)‖2

λ?

as long as

‖M −M (l)‖ ≤ (1− 1/
√

2)
(
λ(l) −max

j≥2

∣∣λj(M (l))∣∣),
λ(l) −max

j≥2

∣∣λj(M (l))∣∣ ≥ λ?/2
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Bounding ‖
(
M −M (l)

)
u(l)‖2

By design,(
M −M (l))u(l) = elEl,·u

(l) + u
(l)
l (E·,l − El,lel),

which together with triangle inequality yields

‖
(
M −M (l))u(l)‖2 ≤

∣∣El,·u
(l)∣∣+ ∥∥E·,l∥∥2 ·

∣∣u(l)
l

∣∣
≤ 5σ

√
logn+

∥∥E·,l∥∥2
(∣∣ul∣∣+ ∥∥u− u(l)∥∥

∞
)

≤ 5σ
√

logn+ 5σ
√
n‖u‖∞ + 5σ

√
n
∥∥u− u(l)∥∥

2
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Bounding ‖u− u(l)‖2 (cont.)

Combining previous bounds, we arrive at

∥∥u− u(l)∥∥
2 ≤

20σ
√

logn+ 20σ
√
n‖u‖∞ + 20σ

√
n
∥∥u− u(l)∥∥

2
λ?

≤ 20σ
√

logn+ 20σ
√
n‖u‖∞

λ?
+ 1

2
∥∥u− u(l)∥∥

2,

provided that 40σ
√
n ≤ λ?

Rearranging terms and taking the union bound, we demonstrate that
whp.,

∥∥u− u(l)∥∥
2 ≤

40σ
√

logn+ 40σ
√
n‖u‖∞

λ?
1 ≤ l ≤ n
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Analyzing leave-one-out iterates

Recall that

u
(l)
l = 1

λ(l)M
(l)
l,· u

(l) = 1
λ(l)M

?
l,·u

(l) = λ?

λ(l)u
?
lu

?>u(l)

This implies

u
(l)
l − u

?
l = u?l

( λ?
λ(l)u

?>u(l) − u?>u?
)

= u?l

(λ? − λ(l)

λ(l) u?>u(l)
)

+ u?lu
?>(u(l) − u?

)
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Analyzing leave-one-out iterates (cont.)

Triangle inequality gives

∣∣u(l)
l − u

?
l

∣∣ ≤ ∣∣u?l ∣∣ ·
∣∣λ? − λ(l)∣∣∣∣λ(l)

∣∣ · ‖u?‖2 · ‖u(l)‖2

+
∣∣u?l ∣∣ · ‖u?‖2 · ∥∥u(l) − u?

∥∥
2

≤
∣∣u?l ∣∣ · 10σ

√
n

λ?
+
∣∣u?l ∣∣ · 10σ

√
n

λ?

≤ 20σ
√
n

λ?
∥∥u?∥∥∞
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Putting pieces together
Now we come to conclude that∥∥u− u?

∥∥
∞ = max

l

∣∣ul − u?l ∣∣ ≤ max
l

{∣∣u(l)
l − u

?
l

∣∣+ ∥∥u− u(l)∥∥
2

}
≤ 20σ

√
n

λ?
∥∥u?∥∥∞ + 40σ

√
logn+ 40σ

√
n‖u‖∞

λ?

One more triangle inequality gives

∥∥u− u?
∥∥
∞ ≤

40σ
√

logn+ 60σ
√
n ‖u?‖∞

λ?
+ 1

2
∥∥u− u?

∥∥
∞,

provided that 80σ
√
n ≤ λ?. Rearranging terms yields

∥∥u− u?
∥∥
∞ ≤

80σ
√

logn+ 120σ
√
n ‖u?‖∞

λ?
=

80σ
√

logn+ 120σ√µ
λ?

,

where the last identity results from the definition of µ
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General `∞ perturbation theory
—symmetric rank-1 case



Setup and notation

Groundtruth: consider a rank-1 psd matrix M? = λ?u?u?> ∈ Rn×n

Incoherence:

µ := n‖u?‖2∞ (1 ≤ µ ≤ n)

Observations:

M = M? + E ∈ Rn×n

with E a symmetric noise matrix

Spectral method: return u leading eigenvector of M

Spectral methods: `2,∞ perturbation theory 6-28



Noise assumptions

The entries in the lower triangular part of E = [Ei,j ]1≤i,j≤n are
independently generated obeying

E[Ei,j ] = 0, E[E2
i,j ] ≤ σ2, |Ei,j | ≤ B, for all i ≥ j

Further, assume that

cb := B

σ
√
n/(µ logn)

= O(1)

Spectral methods: `2,∞ perturbation theory 6-29



`∞ perturbation theory

Theorem 6.4
With high prob, there exists z ∈ {1,−1} such that

∥∥zu− u?
∥∥
∞ .

σ
√
µ+ σ

√
logn

λ?
, (6.3a)

∥∥zu− 1
λ?

Mu?
∥∥
∞ .

σ
√
µ

λ?
+
σ2√n logn+ σB

√
µ log3 n

(λ?)2 (6.3b)

provided that σ
√
n logn ≤ cσλ? for some sufficiently small constant

cσ > 0.

• Delocalization of error
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First-order expansion

Chain of approximation

u = Mu

λ
≈ Mu?

λ?
≈ M?u?

λ?
= u?

• first approximation is much tighter than the second one
• important in certain applications such as SBM
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Application: exact recovery in community
detection



Exact recovery using spectral method

We consider the case when (why?)

p = α logn
n

, and q = β logn
n

Theorem 6.5

Fix any constant ε > 0. Suppose α > β > 0 are sufficiently large*,
and (√

α−
√
β
)2 ≥ 2 (1 + ε) .

With probability 1− o(1), spectral method achieves exact recovery.
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Optimality of spectral method

It turns out that when(√
α−

√
β
)2 ≤ 2 (1− ε) ,

no method whatsoever can achieve exact recovery

—what’s special about
(√
α−
√
β
)2 or

(√
p−√q

)2?
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Squared Hellinger distance

Definition 6.6

Consider two distributions P and Q over a finite alphabet Y. The
squared Hellinger distance H2(P ‖Q) between P and Q is defined as

H2(P ‖Q) := 1
2
∑

y∈Y

(√
P (y)−

√
Q(y)

)2
. (6.4)

Consider squared Hellinger distance between Bern(p) and Bern(q):

H2(Bern(p),Bern(q)
)

:= 1
2
(√
p−√q

)2 + 1
2
(√

1− p−
√

1− q
)2

= (1 + o(1))1
2
(√
p−√q

)2
,

when p = o(1) and q = o(1)
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Optimality of spectral method (cont.)

The phase transition phenomenon can then be described as

spectral method works if H2(Bern(p),Bern(q)
)
≥ (1 + ε) logn

n

no algorithm works if H2(Bern(p),Bern(q)
)
≤ (1− ε) logn

n

for an arbitrary small constant ε > 0
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Fine-grained analysis of spectral clustering

Consider “ground-truth” matrix

M? := E[A]− p+ q

2 11> = p− q
2

[
1
−1

] [
1> −1>

]
,

which obeys

λ1(M?) := (p− q)n
2 , and u? := 1√

n

[
1n/2
−1n/2

]
.

These imply

λ? = n(p−q)
2 , µ = 1,

B = 1, σ2 ≤ max{p, q} = p
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Invoke `∞ perturbation theory

`∞ perturbation bound (6.3b) yields

∥∥zλ?u−Mu?
∥∥
∞ . σ + σ2√n logn

λ?
+ σB log3/2 n

λ?

≤ C
(√

p+ p
√

logn√
n(p− q) +

√
p log3/2 n

n(p− q)
)

=: ∆

for some constant C > 0

it boils down to characterizing the entrywise behavior of Mu?
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Bounding entries in Mu?

Lemma 6.7

Suppose that (√
α−

√
β
)2 ≥ 2 (1 + ε)

for some quantity ε > 0. Then with probability exceeding 1− o(1),
one has

Ml,·u
? ≥ η logn√

n
for all l ≤ n

2 and Ml,·u
? ≤ −η logn√

n
for all l > n

2 ,

where η > 0 obeys (
√
α−
√
β)2 − η log(α/β) > 2.

Key message: entries in Mu? are bounded away from 0 with correct
sign
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Completing the picture
On one hand

Ml,·u
? ≥ η logn√

n
for all l ≤ n

2 and Ml,·u
? ≤ −η logn√

n
for all l > n

2

On the other hand ∥∥zλ?u−Mu?
∥∥
∞ ≤ ∆

In sum, if one can show

η logn√
n

> ∆ (6.5)

then it follows that

zulu
?
l > 0 for all 1 ≤ l ≤ n =⇒ exact recovery
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Proof of relation (6.5)

Our goal is to show

η logn√
n
≥ C

(√
p+ p

√
logn√

n(p− q) +
√
p log3/2 n

n(p− q)
)

• 1st term: √p �
√

logn
n � η logn√

n

• 2nd term: p
√

logn√
n(p−q) �

√
logn
n � η logn√

n

• 3rd term: divide discussion into two cases α/β ≤ 2, and α/β ≥ 2
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Compare two sets of Bernoullis

Lemma 6.8

Suppose α > β, {Wi}1≤i≤n/2 are i.i.d. Bern(α logn
n ), and {Zi}1≤i≤n/2

are i.i.d. Bern(β logn
n ), which are independent of Wi. For any t > 0,

one has

P

n/2∑
i=1

Wi −
n/2∑
i=1

Zi ≤ t logn

 ≤ n−(
√
a−
√
b)2/2+t log(a/b)/2.
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Proof of Lemma 6.7

Note that Mu? = (A− p+q
2 11>)u? = Au?. Hence

M1,:u
? = A1,:u

? = 1√
n

n/2∑
j=1

A1,j −
n∑

j=n/2+1
A1,j



Apply Lemma 6.8 to obtain with probability at least
1− n−(

√
a−
√
b)2/2+η log(a/b)/2 = 1− o(n−1)

M1,:u
? ≥ η logn√

n

Invoke union bound to complete proof
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Proof of Lemma 6.8
We apply the Laplace transform method: for any λ < 0

P

n/2∑
i=1

Wi −
n/2∑
i=1

Zi ≤ t logn


= P

exp

λ
n/2∑
i=1

Wi −
n/2∑
i=1

Zi

 ≥ exp (λt logn)


≤

E
[
exp

(
λ
(∑n/2

i=1Wi −
∑n/2
i=1 Zi

))]
exp (λt logn)

By independence, one has

E

exp

λ
n/2∑
i=1

Wi −
n/2∑
i=1

Zi

 =
n/2∏
i=1

E [exp (λWi)]E [exp (−λZi)]
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Proof of Lemma 6.8 (cont.)
By definition and using 1 + x ≤ ex, one has

E [exp (λWi)] = α logn
n

exp (λ) +
(

1− α logn
n

)
≤ exp

(
α logn
n

exp (λ)− α logn
n

)
Similarly for Zi, one has

E [exp (−λWi)] ≤ exp
(
β logn
n

exp (−λ)− β logn
n

)
Combine these two to see that

E [exp (λWi)]E [exp (−λZi)]

≤ exp
( logn

n
(α exp (λ) + β exp (−λ)− α− β)

)
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Proof of Lemma 6.8 (cont.)

Combine previous two pages to see

logP

n/2∑
i=1

Wi −
n/2∑
i=1

Zi ≤ t logn


≤ −λt logn+ n

2
logn
n

(α exp (λ) + β exp (−λ)− α− β)

Set λ = − log (α/β) /2 to obtain

α exp (λ)+β exp (−λ)−α−β = α

√
β

α
+β
√
α

β
−α−β = −

(√
α−

√
β
)2

and proof is finished
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General `2,∞ perturbation theory
—rank-r case



Setup and notation

Groundtruth: consider a rank-r matrix M? = U?Σ?V ?> ∈ Rn1×n2 ,
with singular values σ?1 ≥ σ?2 ≥ · · · ≥ σ?r > 0 (assume n1 ≤ n2)

Two convenient notation:

κ := σ?1
σ?r
, n := n1 + n2

Observations:

M = M? + E ∈ Rn1×n2

with E a noise matrix

Spectral method: return U ,V where M = UΣV > + U⊥Σ⊥V
>
⊥
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Noise assumptions

The entries in E = [Ei,j ]1≤i≤n1,1≤j≤n2 are independently generated
obeying

E[Ei,j ] = 0, E[E2
i,j ] ≤ σ2, |Ei,j | ≤ B, for all i, j

Further, assume that

cb := B

σ
√
n1/(µ logn)

= O(1)

Spectral methods: `2,∞ perturbation theory 6-49



`2,∞ distance between U and U ?

Need to take into account rotation ambiguity
—which rotation matrix to use?

Definition 6.9
For any square matrix Z with SVD Z = UZΣZV

>
Z , define

sgn(Z) := UZV
>
Z (6.6)

to be the matrix sign function of Z.

Use sgn(U>U?)—solution to procrustes problem, which yields

‖Usgn(U>U?)−U?‖2,∞
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Incoherence of subspace

Definition 6.10
Fix an orthonormal matrix U? ∈ Rn×r. Define its incoherence to be

µ(U?) :=
n‖U?‖22,∞

r

—recover incoherence of eigenvector when r = 1

• For M? = U?Σ?V ?>, define µ(M?) := max{µ(U?), µ(V ?)}
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`2,∞ perturbation theory

Define HU := U>U? and HV := V >V ?

Theorem 6.11

With probability at least 1−O(n−5), one has

max
{
‖Usgn(HU )−U?‖2,∞, ‖V sgn(HV )− V ?‖2,∞

}
.
σ
√
r
(
κ
√

n2
n1
µ+
√

logn
)

σ?r
,

provided that σ
√
n logn ≤ c1σ

?
r for some sufficiently small constant

c1 > 0.
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Entrywise reconstruction error

Recall M = UΣV > + U⊥Σ⊥V
>
⊥

Corollary 6.12
In addition, if σκ

√
n logn ≤ c2σ

?
r for some small enough constant

c2 > 0, then the following holds with probability at least 1−O(n−5):

‖UΣV > −M?‖∞ . σκ2µr

√
(n2/n1) logn

n1
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De-localization of estimation error

For simplicity, let us consider the case where µ, κ, n2/n1 = O(1).
Davis-Kahan theorem results in the following `2 estimation guarantees

distF(U ,U?) ≤
√
r dist(U ,U?) . σ

√
nr

σ?r

In comparison, the `2,∞ bound derived in Theorem 6.11 simplifies to

min
R∈Or×r

∥∥UR−U?
∥∥

2,∞ ≤
∥∥Usgn(H)−U?

∥∥
2,∞ .

σ
√
r logn
σ?r
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De-localization of estimation error (cont.)

For the matrix reconstruction error, one has

‖UΣV > −M?‖ ≤ 2‖M −M?‖ . σ
√
n,

which implies ‖UΣV > −M?‖F . σ
√
nr

In comparison, one has

‖UΣV > −M?‖∞ . σr

√
logn
n
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Application: entrywise error in matrix
completion



Low-rank matrix completion



X ? ? ? X ?
? ? X X ? ?
X ? ? X ? ?
? ? X ? ? X
X ? ? ? ? ?
? X ? ? X ?
? ? X X ? ?



? ? ? ?

?

?

??

??

???

?

?

figure credit: Candès
• consider a low-rank matrix M? = U?Σ?V ?>

• each entry M?
i,j is observed independently with prob. p

• intermediate goal: estimate U?,V ?
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Spectral method for matrix completion

1. identify the key matrix M?

2. construct surrogate matrix M ∈ Rn×n as

Mi,j =
{1
pM

?
i,j , if M?

i,j is observed
0, else

◦ rationale for rescaling: ensures E[M ] = M?

3. compute the rank-r SVD UΣV > of M , and return (U ,Σ,V )
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`2 guarantees for matrix completion

Theorem 6.13

Suppose that n1p ≥ C1κ
2µr logn2 for some sufficiently large

constant C1 > 0. Then with probability exceeding 1−O(n−10
2 ),

max
{

dist (U ,U?) , dist (V ,V ?)
}
. κ

√
µr logn2
n1p

.

• Key: bound ‖M −M?‖ by
√

µr logn2
n1p

‖M?‖ (homework)
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`2,∞ guarantees for matrix completion

Theorem 6.14

Suppose that n1 ≤ n2 and n1p ≥ Cκ4µ2r2 logn for some sufficiently
large constant C > 0. Then with high prob., we have

max{‖Usgn(HU )−U?‖2,∞, ‖V sgn(HV )− V ?‖2,∞}

≤ κ2
√
µ3r3 logn

n2
1p

;

‖UΣV > −M?‖∞ . κ2µ2r2
√

logn
n3

1p
‖M?‖
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Proof of Theorem 6.14

Recall our notation E = M −M? = p−1PΩ(M?)−M?. It is
straightforward to check that E satisfies noise assumptions with

σ2 := ‖M
?‖2∞
p

, and B := ‖M
?‖∞
p

In addition, from the relation B = cbσ
√
n1/(µ logn), it is seen that

cb = O(1) holds as long as n1p & µ logn.

With these preparations in place, the claims in Theorem 6.14 follow
directly from Theorem 6.11 and

‖M?‖∞ ≤ µr
∥∥M?

∥∥/√n1n2

Spectral methods: `2,∞ perturbation theory 6-61



What we have not discussed so far

• More applications of spectral methods

• Uncertainty quantification for spectral estimators

• Precise asymptotic analysis of spectral estimators

• Variants of spectral methods with certain advantages

• `p analysis of spectral methods
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