STAT 37797: Mathematics of Data Science

Matrix concentration inequalities

Cong Ma
University of Chicago, Winter 2024

Concentration inequalities

Let $X_{1}, X_{2}, \ldots, X_{n}$ be i.i.d. random variables, law of large numbers tells us that

$$
\frac{1}{n} \sum_{l=1}^{n} X_{l}-\mathbb{E}\left[\frac{1}{n} \sum_{l=1}^{n} X_{l}\right] \rightarrow 0, \quad \text { as } n \rightarrow \infty
$$

Key message:

sum of independent random variables concentrate around its mean

- how fast does it concentrate?

Bernstein's inequality

Consider a sequence of independent random variables $\left\{X_{l}\right\} \in \mathbb{R}$

- $\mathbb{E}\left[X_{l}\right]=0 \quad \bullet\left|X_{l}\right| \leq B$ for each l
- variance statistic:

$$
v:=\mathbb{E}\left[\left(\sum_{l} X_{l}\right)^{2}\right]=\sum_{l=1}^{n} \mathbb{E}\left[X_{l}^{2}\right]
$$

Theorem 4.1 (Bernstein's inequality)

For all $\tau \geq 0$,

$$
\mathbb{P}\left\{\left|\sum_{l} X_{l}\right| \geq \tau\right\} \leq 2 \exp \left(\frac{-\tau^{2} / 2}{v+B \tau / 3}\right)
$$

Tail behavior

$$
\mathbb{P}\left\{\left|\sum_{l} X_{l}\right| \geq \tau\right\} \leq 2 \exp \left(\frac{-\tau^{2} / 2}{v+B \tau / 3}\right)
$$

- moderate-deviation regime (τ is small):
- sub-Gaussian tail behavior $\exp \left(-\tau^{2} / 2 v\right)$
- large-deviation regime (τ is large):
- sub-exponential tail behavior $\exp (-3 \tau / 2 B)$ (slower decay)
- user-friendly form (exercise): with prob. $1-O\left(n^{-10}\right)$

$$
\left|\sum_{l} X_{l}\right| \lesssim \sqrt{v \log n}+B \log n
$$

Tail behavior (cont.)

There are exponential concentration inequalities for spectral norm of sum of independent random matrices

Matrix Bernstein inequality

Consider a sequence of independent random matrices $\left\{\boldsymbol{X}_{l} \in \mathbb{R}^{d_{1} \times d_{2}}\right\}$

- $\mathbb{E}\left[\boldsymbol{X}_{l}\right]=\mathbf{0}$
- $\left\|\boldsymbol{X}_{l}\right\| \leq B$ for each l
- variance statistic:

$$
v:=\max \left\{\left\|\mathbb{E}\left[\sum_{l} \boldsymbol{X}_{l} \boldsymbol{X}_{l}^{\top}\right]\right\|,\left\|\mathbb{E}\left[\sum_{l} \boldsymbol{X}_{l}^{\top} \boldsymbol{X}_{l}\right]\right\|\right\}
$$

Theorem 4.2 (Matrix Bernstein inequality)

For all $\tau \geq 0$,

$$
\mathbb{P}\left\{\left\|\sum_{l} \boldsymbol{X}_{l}\right\| \geq \tau\right\} \leq\left(d_{1}+d_{2}\right) \exp \left(\frac{-\tau^{2} / 2}{v+B \tau / 3}\right)
$$

Matrix Bernstein inequality

Consider a sequence of independent random matrices $\left\{\boldsymbol{X}_{l} \in \mathbb{R}^{d_{1} \times d_{2}}\right\}$

- $\mathbb{E}\left[\boldsymbol{X}_{l}\right]=\mathbf{0}$
- $\left\|\boldsymbol{X}_{l}\right\| \leq B$ for each l
- variance statistic:

$$
v:=\max \left\{\left\|\mathbb{E}\left[\sum_{l} \boldsymbol{X}_{l} \boldsymbol{X}_{l}^{\top}\right]\right\|,\left\|\mathbb{E}\left[\sum_{l} \boldsymbol{X}_{l}^{\top} \boldsymbol{X}_{l}\right]\right\|\right\}
$$

Theorem 4.2 (Matrix Bernstein inequality)

For all $\tau \geq 0$,

$$
\mathbb{P}\left\{\left\|\sum_{l} \boldsymbol{X}_{l}\right\| \geq \tau\right\} \leq\left(d_{1}+d_{2}\right) \exp \left(\frac{-\tau^{2} / 2}{v+B \tau / 3}\right)
$$

User-friendly form: with probability at least $1-O\left(\left(d_{1}+d_{2}\right)^{-10}\right)$

$$
\begin{equation*}
\left\|\sum_{l} \boldsymbol{X}_{l}\right\| \lesssim \sqrt{v \log \left(d_{1}+d_{2}\right)}+B \log \left(d_{1}+d_{2}\right) \tag{4.1}
\end{equation*}
$$

This lecture: detailed introduction to matrix Bernstein

An introduction to matrix concentration inequalities - Joel Tropp '15

Outline

- Background on matrix functions
- Matrix Laplace transform method
- Matrix Bernstein inequality

Background on matrix functions

Matrix function

Suppose the eigendecomposition of a symmetric matrix $\boldsymbol{A} \in \mathbb{R}^{d \times d}$ is

$$
\boldsymbol{A}=\boldsymbol{U}\left[\begin{array}{lll}
\lambda_{1} & & \\
& \ddots & \\
& & \lambda_{d}
\end{array}\right] \boldsymbol{U}^{\top}
$$

Then we can define

$$
f(\boldsymbol{A}):=\boldsymbol{U}\left[\begin{array}{lll}
f\left(\lambda_{1}\right) & & \\
& \ddots & \\
& & f\left(\lambda_{d}\right)
\end{array}\right] \boldsymbol{U}^{\top}
$$

— align with our intuition about \boldsymbol{A}^{k}

Examples of matrix functions

- Let $f(a)=c_{0}+\sum_{k=1}^{\infty} c_{k} a^{k}$, then

$$
f(\boldsymbol{A}):=c_{0} \boldsymbol{I}+\sum_{k=1}^{\infty} c_{k} \boldsymbol{A}^{k}
$$

- matrix exponential: $\mathrm{e}^{\boldsymbol{A}}:=\boldsymbol{I}+\sum_{k=1}^{\infty} \frac{1}{k!} \boldsymbol{A}^{k}$
- monotonicity: if $\boldsymbol{A} \preceq \boldsymbol{H}$, then $\operatorname{tr} \mathrm{e}^{\boldsymbol{A}} \leq \operatorname{tr} \mathrm{e}^{\boldsymbol{H}}$
- matrix logarithm: $\log \left(\mathrm{e}^{\boldsymbol{A}}\right):=\boldsymbol{A}$
- monotonicity: if $\mathbf{0} \preceq \boldsymbol{A} \preceq \boldsymbol{H}$, then $\log \boldsymbol{A} \preceq \log (\boldsymbol{H})$ (does not hold for matrix exponential)

Matrix moments and cumulants

Let \boldsymbol{X} be a random symmetric matrix. Then

- matrix moment generating function (MGF):

$$
\boldsymbol{M}_{\boldsymbol{X}}(\theta):=\mathbb{E}\left[\mathrm{e}^{\theta \boldsymbol{X}}\right]
$$

- matrix cumulant generating function (CGF):

$$
\boldsymbol{\Xi}_{\boldsymbol{X}}(\theta):=\log \mathbb{E}\left[\mathrm{e}^{\theta \boldsymbol{X}}\right]
$$

- expectations may not exist for all θ

Matrix Laplace transform method

Matrix Laplace transform

A key step for a scalar random variable Y : by Markov's inequality,

$$
\mathbb{P}\{Y \geq t\} \leq \inf _{\theta>0} \mathrm{e}^{-\theta t} \mathbb{E}\left[\mathrm{e}^{\theta Y}\right]
$$

This can be generalized to the matrix case

Matrix Laplace transform

Lemma 4.3
Let \boldsymbol{Y} be a random symmetric matrix. For all $t \in \mathbb{R}$,

$$
\mathbb{P}\left\{\lambda_{\max }(\boldsymbol{Y}) \geq t\right\} \leq \inf _{\theta>0} \mathrm{e}^{-\theta t} \mathbb{E}\left[\operatorname{tr~}^{\theta \boldsymbol{Y}}\right]
$$

- can control the extreme eigenvalues of \boldsymbol{Y} via the trace of the matrix MGF
- similar result holds for minimum eigenvalue

Proof of Lemma 4.3

For any $\theta>0$,

$$
\begin{aligned}
\mathbb{P}\left\{\lambda_{\max }(\boldsymbol{Y}) \geq t\right\} & =\mathbb{P}\left\{\mathrm{e}^{\theta \lambda_{\max }(\boldsymbol{Y})} \geq \mathrm{e}^{\theta t}\right\} \\
& \leq \frac{\mathbb{E}\left[\mathrm{e}^{\theta \lambda_{\max }(\boldsymbol{Y})}\right]}{\mathrm{e}^{\theta t}} \quad \text { (Markov's inequality) } \\
& =\frac{\mathbb{E}\left[\mathrm{e}^{\lambda_{\max }(\theta \boldsymbol{Y})}\right]}{\mathrm{e}^{\theta t}} \\
& =\frac{\mathbb{E}\left[\lambda_{\max }\left(\mathrm{e}^{\theta \boldsymbol{Y}}\right)\right]}{\mathrm{e}^{\theta t}} \quad\left(\mathrm{e}^{\lambda_{\max }(\boldsymbol{Z})}=\lambda_{\max }\left(\mathrm{e}^{\boldsymbol{Z}}\right)\right) \\
& \leq \frac{\mathbb{E}\left[\operatorname{tr} \mathrm{e}^{\theta \boldsymbol{Y}}\right]}{\mathrm{e}^{\theta t}}
\end{aligned}
$$

This completes the proof since it holds for any $\theta>0$

Issues of the matrix MGF

The Laplace transform method is effective for controlling an independent sum when MGF decomposes

- in the scalar case where $X=X_{1}+\cdots+X_{n}$ with independent $\left\{X_{l}\right\}$:

$$
M_{X}(\theta)=\mathbb{E}\left[\mathrm{e}^{\theta X_{1}+\cdots+\theta X_{n}}\right]=\mathbb{E}\left[\mathrm{e}^{\theta X_{1}}\right] \cdots \mathbb{E}\left[\mathrm{e}^{\theta X_{n}}\right]=\underbrace{\prod_{l=1}^{n} M_{X_{l}}(\theta)}_{\text {look at each } X_{l} \text { separately }}
$$

Issues in the matrix settings:

$$
\begin{gathered}
\mathrm{e}^{\boldsymbol{X}_{1}+\boldsymbol{X}_{2}} \neq \mathrm{e}^{\boldsymbol{X}_{1}} \mathrm{e}^{\boldsymbol{X}_{2}} \quad \text { unless } \boldsymbol{X}_{1} \text { and } \boldsymbol{X}_{2} \text { commute } \\
\operatorname{tr} \mathrm{e}^{\boldsymbol{X}_{1}+\cdots+\boldsymbol{X}_{n}} \not \approx \operatorname{tr} \mathrm{e}^{\boldsymbol{X}_{1}} \mathrm{e}^{\boldsymbol{X}_{1}} \cdots \mathrm{e}^{\boldsymbol{X}_{n}} \quad \text { for } n \geq 3
\end{gathered}
$$

How about matrix CGF?

- in the scalar case where $X=X_{1}+\cdots+X_{n}$ with independent $\left\{X_{l}\right\}$:

$$
\Xi_{X}(\theta)=\log M_{X}(\theta)=\underbrace{\sum_{l=1}^{n} \log M_{X_{l}}(\theta)}_{\text {look at each } X_{l} \text { separately }}=\sum_{l} \Xi_{X_{l}}(\theta)
$$

In matrix case, can we hope for

$$
\boldsymbol{\Xi}_{\sum_{l} \boldsymbol{X}_{l}}(\theta)=\sum_{l} \boldsymbol{\Xi}_{\boldsymbol{X}_{l}}(\theta)
$$

- Nope; But...

Subadditivity of matrix CGF

Fortunately, the matrix CGF satisfies certain subadditivity rules, allowing us to decompose independent matrix components

Lemma 4.4

Consider a finite sequence $\left\{\boldsymbol{X}_{l}\right\}_{1 \leq l \leq n}$ of independent random symmetric matrices. Then for any $\theta \in \mathbb{R}$,

$$
\underbrace{\mathbb{E}\left[\operatorname{tr} \mathrm{e}^{\left.\theta \sum_{l} \boldsymbol{X}_{l}\right]}\right.}_{\operatorname{tr} \exp \left(\boldsymbol{\Xi}_{\Sigma_{l} \boldsymbol{X}_{l}(\theta)}\right)} \leq \underbrace{\operatorname{tr} \exp \left(\sum_{l} \log \mathbb{E}\left[\mathrm{e}^{\theta \boldsymbol{X}_{l}}\right]\right)}_{\operatorname{tr} \exp \left(\sum_{l} \boldsymbol{\Xi}_{\boldsymbol{X}_{l}}(\theta)\right)}
$$

- this is a deep result - based on Lieb's Theorem!

Lieb's Theorem

Elliott Lieb

Theorem 4.5 (Lieb '73)

Fix a symmetric matrix \boldsymbol{H}. Then

$$
\boldsymbol{A} \mapsto \operatorname{tr} \exp (\boldsymbol{H}+\log \boldsymbol{A})
$$

is concave on positive-definite cone

Lieb's Theorem immediately implies (exercise: Jensen's inequality)

$$
\begin{equation*}
\mathbb{E}[\operatorname{tr} \exp (\boldsymbol{H}+\boldsymbol{X})] \leq \operatorname{tr} \exp \left(\boldsymbol{H}+\log \mathbb{E}\left[\mathrm{e}^{\boldsymbol{X}}\right]\right) \tag{4.2}
\end{equation*}
$$

Proof sketch of Lieb's Theorem

Main observation: $\operatorname{tr}(\cdot)$ admits a variational formula

Lemma 4.6

For any $\boldsymbol{M} \succeq \mathbf{0}$, one has

$$
\operatorname{tr} \boldsymbol{M}=\sup _{\boldsymbol{T} \succ \sup _{\text {relative entropy is }-\boldsymbol{T} \log \boldsymbol{M}+\boldsymbol{T} \log \boldsymbol{T}-\boldsymbol{T}+\boldsymbol{M}} \operatorname{tr}[\underbrace{\boldsymbol{T} \log \boldsymbol{M}-\boldsymbol{T} \log \boldsymbol{T}+\boldsymbol{T}}]]}
$$

Proof of Lemma 4.4

$$
\begin{aligned}
\mathbb{E}\left[\operatorname{tr} \mathrm{e}^{\theta \sum_{l} \boldsymbol{X}_{l}}\right] & =\mathbb{E}\left[\operatorname{tr} \exp \left(\theta \sum_{l=1}^{n-1} \boldsymbol{X}_{l}+\theta \boldsymbol{X}_{n}\right)\right] \\
& \leq \mathbb{E}\left[\operatorname{tr} \exp \left(\theta \sum_{l=1}^{n-1} \boldsymbol{X}_{l}+\log \mathbb{E}\left[\mathrm{e}^{\theta \boldsymbol{X}_{n}}\right]\right)\right] \quad(\text { by }(4.2)) \\
& \leq \mathbb{E}\left[\operatorname{tr} \exp \left(\theta \sum_{l=1}^{n-2} \boldsymbol{X}_{l}+\log \mathbb{E}\left[\mathrm{e}^{\theta \boldsymbol{X}_{n-1}}\right]+\log \mathbb{E}\left[\mathrm{e}^{\theta \boldsymbol{X}_{n}}\right]\right)\right] \\
& \leq \cdots \\
& \leq \operatorname{tr} \exp \left(\sum_{l=1}^{n} \log \mathbb{E}\left[\mathrm{e}^{\theta \boldsymbol{X}_{l}}\right]\right)
\end{aligned}
$$

Master bounds

Combining the Laplace transform method with the subadditivity of CGF yields:

Theorem 4.7 (Master bounds for sum of independent matrices)
Consider a finite sequence $\left\{\boldsymbol{X}_{l}\right\}$ of independent random symmetric matrices. Then

$$
\mathbb{P}\left\{\lambda_{\max }\left(\sum_{l} \boldsymbol{X}_{l}\right) \geq t\right\} \leq \inf _{\theta>0} \frac{\operatorname{tr} \exp \left(\sum_{l} \log \mathbb{E}\left[\mathrm{e}^{\theta \boldsymbol{X}_{l}}\right]\right)}{\mathrm{e}^{\theta t}}
$$

- this is a general result underlying the proofs of the matrix Bernstein inequality and beyond (e.g., matrix Chernoff)

Matrix Bernstein inequality

Matrix CGF

$$
\mathbb{P}\left\{\lambda_{\max }\left(\sum_{l} \boldsymbol{X}_{l}\right) \geq t\right\} \leq \inf _{\theta>0} \frac{\operatorname{tr} \exp \left(\sum_{l} \log \mathbb{E}\left[\mathrm{e}^{\theta \boldsymbol{X}_{l}}\right]\right)}{\mathrm{e}^{\theta t}}
$$

To invoke the master bound, one needs to $\underbrace{\text { control the matrix CGF }}$ main step for proving matrix Bernstein

Symmetric case

Consider a sequence of independent random symmetric matrices $\left\{\boldsymbol{X}_{l} \in \mathbb{R}^{d \times d}\right\}$

- $\mathbb{E}\left[\boldsymbol{X}_{l}\right]=\mathbf{0}$
- $\lambda_{\text {max }}\left(\boldsymbol{X}_{l}\right) \leq B$ for each l
- variance statistic: $v:=\left\|\mathbb{E}\left[\sum_{l} \boldsymbol{X}_{l}^{2}\right]\right\|$

Theorem 4.8 (Matrix Bernstein inequality: symmetric case)
For all $\tau \geq 0$,

$$
\mathbb{P}\left\{\lambda_{\max }\left(\sum_{l} \boldsymbol{X}_{l}\right) \geq \tau\right\} \leq d \exp \left(\frac{-\tau^{2} / 2}{v+B \tau / 3}\right)
$$

- left as exercise to prove extension to rectangular case

Bounding matrix CGF

For bounded random matrices, one can control the matrix CGF as follows:

Lemma 4.9

Suppose $\mathbb{E}[\boldsymbol{X}]=\mathbf{0}$ and $\lambda_{\max }(\boldsymbol{X}) \leq B$. Then for $0<\theta<3 / B$,

$$
\log \mathbb{E}\left[\mathrm{e}^{\theta \boldsymbol{X}}\right] \preceq \frac{\theta^{2} / 2}{1-\theta B / 3} \mathbb{E}\left[\boldsymbol{X}^{2}\right]
$$

Proof of Theorem 4.8

Let $g(\theta):=\frac{\theta^{2} / 2}{1-\theta B / 3}$, then it follows from the master bound that

$$
\begin{aligned}
\mathbb{P}\left\{\lambda_{\max }\left(\sum_{i} \boldsymbol{X}_{i}\right) \geq t\right\} & \leq \inf _{\theta>0} \frac{\operatorname{tr} \exp \left(\sum_{i=1}^{n} \log \mathbb{E}\left[\mathrm{e}^{\theta \boldsymbol{X}_{i}}\right]\right)}{\mathrm{e}^{\theta t}} \\
& \leq \inf _{0<\theta<3 / B} \frac{\operatorname{tr} \exp \left(g(\theta) \sum_{i=1}^{n} \mathbb{E}\left[\boldsymbol{X}_{i}^{2}\right]\right)}{\mathrm{e}^{\theta t}} \\
& \leq \inf _{0<\theta<3 / B} \frac{d \exp (g(\theta) v)}{\mathrm{e}^{\theta t}}
\end{aligned}
$$

Taking $\theta=\frac{t}{v+B t / 3}$ and simplifying the above expression, we establish matrix Bernstein

Proof of Lemma 4.9

Define $f(x)=\frac{\mathrm{e}^{\theta x}-1-\theta x}{x^{2}}$, then for any \boldsymbol{X} with $\lambda_{\max }(\boldsymbol{X}) \leq B$:

$$
\begin{aligned}
\mathrm{e}^{\theta \boldsymbol{X}} & =\boldsymbol{I}+\theta \boldsymbol{X}+\left(\mathrm{e}^{\theta \boldsymbol{X}}-\boldsymbol{I}-\theta \boldsymbol{X}\right)=\boldsymbol{I}+\theta \boldsymbol{X}+\boldsymbol{X} \cdot f(\boldsymbol{X}) \cdot \boldsymbol{X} \\
& \preceq \boldsymbol{I}+\theta \boldsymbol{X}+f(B) \cdot \boldsymbol{X}^{2}
\end{aligned}
$$

In addition, we note an elementary inequality: for any $0<\theta<3 / B$,

$$
\begin{gathered}
f(B)=\frac{\mathrm{e}^{\theta B}-1-\theta B}{B^{2}}=\frac{1}{B^{2}} \sum_{k=2}^{\infty} \frac{(\theta B)^{k}}{k!} \leq \frac{\theta^{2}}{2} \sum_{k=2}^{\infty} \frac{(\theta B)^{k-2}}{3^{k-2}}=\frac{\theta^{2} / 2}{1-\theta B / 3} \\
\Longrightarrow \quad \mathrm{e}^{\theta \boldsymbol{X}} \preceq \boldsymbol{I}+\theta \boldsymbol{X}+\frac{\theta^{2} / 2}{1-\theta B / 3} \cdot \boldsymbol{X}^{2}
\end{gathered}
$$

Since \boldsymbol{X} is zero-mean, one further has

$$
\mathbb{E}\left[\mathrm{e}^{\theta \boldsymbol{X}}\right] \preceq \boldsymbol{I}+\frac{\theta^{2} / 2}{1-\theta B / 3} \mathbb{E}\left[\boldsymbol{X}^{2}\right] \preceq \exp \left(\frac{\theta^{2} / 2}{1-\theta B / 3} \mathbb{E}\left[\boldsymbol{X}^{2}\right]\right)
$$

Finish by observing log is monotone

Appendix: asymptotic notation

- $f(n) \lesssim g(n)$ or $f(n)=O(g(n))$ means

$$
\limsup _{n \rightarrow \infty} \frac{|f(n)|}{|g(n)|} \leq \text { const }
$$

- $f(n) \gtrsim g(n)$ or $f(n)=\Omega(g(n))$ means

$$
\liminf _{n \rightarrow \infty} \frac{|f(n)|}{|g(n)|} \geq \text { const }
$$

- $f(n) \asymp g(n)$ or $f(n)=\Theta(g(n))$ means

$$
f(n) \lesssim g(n) \quad \text { and } f(n) \gtrsim g(n)
$$

- $f(n)=o(g(n))$ means

$$
\lim _{n \rightarrow \infty} \frac{|f(n)|}{|g(n)|}=0
$$

