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Concentration inequalities

Let X1, Xo,..., X, bei.i.d. random variables, law of large numbers
tells us that

1 & 1 &
EZX[ lnz ] , as n — o
=1 =1

Key message:

sum of independent random variables concentrate around its mean

— how fast does it concentrate?
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Bernstein’s inequality

Consider a sequence of independent random variables {X;} € R
e E[X;]=0 e |X;| < B for each [

e variance statistic:

n

> E[X7]

l =1

e
I
=
N
>
e
[

Theorem 4.1 (Bernstein’s inequality)

For all 7 > 0,

P{‘ZZXZ‘ > T} < 2exp (1}:—;42/?)
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Tail behavior

Bl x| 2 7)< 20 (13/2/3)

e moderate-deviation regime (7 is small):
— sub-Gaussian tail behavior exp(—72/2v)

e large-deviation regime (7 is large):
— sub-exponential tail behavior exp(—37/2B) (slower decay)

e user-friendly form (exercise): with prob. 1 — O(n~10)

>, %] S Vvlogn + Blogn
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Tail behavior (cont.)

exponential tail

Matrix concentration

Gaussian tail
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There are exponential concentration inequalities for
spectral norm of sum of independent random matrices



Matrix Bernstein inequality

Consider a sequence of independent random matrices { X, € RledQ}
e E[X;]=0 e | X;|| < B for each [

e variance statistic:

o= mae { £ [0, x| [0, %7 x|}

Theorem 4.2 (Matrix Bernstein inequality)

)

For all 7 > 0,

p{|S | 2 7} < (dh +da)eso (;B/Q/g)
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Matrix Bernstein inequality

Consider a sequence of independent random matrices { X, € RledQ}
e E[X;]=0 e | X;|| < B for each [

e variance statistic:
vimmax { B30 207 [B[32, X x|}

Theorem 4.2 (Matrix Bernstein inequality)

)

For all T > 0, ,
p{|S | 2 7} < (dh +da)eso (;B/Q/g)

User-friendly form: with probability at least 1 — O((d; + d2)~'?)

|3, 1] < Jvlos(ds + do) + Blog(ds +d2)  (4.1)
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This lecture: detailed introduction to matrix Bernstein

An introduction to matrix concentration inequalities
— Joel Tropp '15



Outline

e Background on matrix functions
e Matrix Laplace transform method

e Matrix Bernstein inequality
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Background on matrix functions



Matrix function

Suppose the eigendecomposition of a symmetric matrix A € R4*? is

A1
A=U U’
Ad

Then we can define

f(A)=U U'
f(Aa)

— align with our intuition about AF
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Examples of matrix functions

o Let f(a) =co+ 232 ckak, then
f(A) = col + ) cp A
k=1

e matrix exponential: e/ := I+ 32, L A"
o monotonicity: if A < H, then tr e < tref

e matrix logarithm: log(e?) := A
o monotonicity: if 0 < A < H, then log A < log(H) (does not
hold for matrix exponential)
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Matrix moments and cumulants

Let X be a random symmetric matrix. Then

e matrix moment generating function (MGF):
Mx (0) := E[e?X]
e matrix cumulant generating function (CGF):
Ex(0) = log E[e?]

— expectations may not exist for all 6
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Matrix Laplace transform method



Matrix Laplace transform

A key step for a scalar random variable Y: by Markov's inequality,

P{Y >t} < infe ' E[?Y
(Y=t} < inf ™" E[e™]

This can be generalized to the matrix case
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Matrix Laplace transform

Lemma 4.3

Let Y be a random symmetric matrix. For all t € R,

P {dmax(Y) > t} < inf e ' E[tre’Y]
>

e can control the extreme eigenvalues of Y via the trace of the
matrix MGF

e similar result holds for minimum eigenvalue
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Proof of Lemma 4.3

For any 6 > 0,

P{Amax(Y) Z t} ) {egAmax(Y) Z e@t}
E[ee)\max(Y)]
e@t
E[e)\max(eY)]
e@t

IE/\max eGY
I R

< (Markov's inequality)

E[trefY]

<
=T 0

This completes the proof since it holds for any 8 > 0
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Issues of the matrix MGF

The Laplace transform method is effective for controlling an
independent sum when MGF decomposes

e in the scalar case where X = X; + .- + X,, with independent

{Xu}:
My (6) = B[+ 0%0] = B[] . B[e?] H My, (6
%,_/
look at each X separately

Issues in the matrix settings:
X1+ X2 #+ eX1eX2 unless X7 and X5 commute

treXit+tXn % treXteXt...eXn forn >3
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How about matrix CGF?

e in the scalar case where X = X7 + --- + X, with independent

{X1}:

1

Ex(0) =logMx(0) = > logMx,(6) = ZEx(0)
l

=1

~—
look at each X separately

In matrix case, can we hope for

Xl = ZEXI

— Nope; But...
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Subadditivity of matrix CGF

Fortunately, the matrix CGF satisfies certain subadditivity rules,
allowing us to decompose independent matrix components

Lemma 4.4

Consider a finite sequence { X;}1<;<, of independent random
symmetric matrices. Then for any 0 € R,

E[tr of > Xl] < trexp (Zl 10gE[eeXl])

tr exp (Ezlxl (9)) tr exp (Zz Ex, (9))

e this is a deep result — based on Lieb’s Theorem!
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Lieb’s Theorem

Theorem 4.5 (Lieb’73)

Fix a symmetric matrix H. Then

A — trexp(H +log A)

is concave on positive-definite cone

Elliott Lieb

Lieb's Theorem immediately implies (exercise: Jensen's inequality)

Etrexp(H + X)] < trexp (H + log E[eX]) (4.2)
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Proof sketch of Lieb’s Theorem

Main observation: tr(-) admits a variational formula

Lemma 4.6

For any M > 0, one has

trM =suptr [ TlogM —TlogT + T |
T>-0
g relative entropy is —T log M +T log T—T+M
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Proof of Lemma 4.4

E[tre? %) = Eftrexp (03 X +0X,)]
<Eftrexp (031 " X +logE["])]  (by (42))
<Eftrexp (03" " X; +log E[e”X-1] + log E[e"X"] )|
<
<

trexp ( 27:1 log I [e?%1] )
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Master bounds

Combining the Laplace transform method with the subadditivity of
CGF vyields:

Theorem 4.7 (Master bounds for sum of independent matrices) |

Consider a finite sequence { X} of independent random symmetric
matrices. Then

_, trexp (3, log E[e?X1))
P Qo (32, X0 2 ) < jof ===

e this is a general result underlying the proofs of the matrix
Bernstein inequality and beyond (e.g., matrix Chernoff)
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Matrix Bernstein inequality



Matrix CGF

trexp (57 log B[X1)
P D32, 1) 2 8} < jut ==

To invoke the master bound, one needs to control the matrix CGF

main step for proving matrix Bernstein
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Symmetric case

Consider a sequence of independent random symmetric matrices
{Xl c Rdxd}

e E[X;]=0 ® \nax(X;) < B for each [

e variance statistic: v := ||E [>; X7]||

Theorem 4.8 (Matrix Bernstein inequality: symmetric case)

For all 7 > 0, )
P{Amax (Zz Xl) > 7'} < dexp (1:3/72/3>

— left as exercise to prove extension to rectangular case
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Bounding matrix CGF

For bounded random matrices, one can control the matrix CGF as
follows:

Lemma 4.9
Suppose E[X] = 0 and Apax(X) < B. Then for 0 < 0 < 3/B,
62/2
0X1 2
logE[e"*] < 1703/3E[X ]
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Proof of Theorem 4.8

Let g(0) := 5 991/9/3, then it follows from the master bound that

trexp (X1 log B!
P (1, X0 = 1} < juf

Lemma 4.9 n RE[X?2
< inf trexp (9(9) - i=1 [ ) D
0<6<3/B et
d 0
< e GO (g( )v)
0<6<3/B e

Taking 6 = +Bt/
matrix Bernstein

3 and simplifying the above expression, we establish
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Proof of Lemma 4.9

Define f(z) = G’GTZ%@”” then for any X with A\ (X) < B:
X=T+0X+ ("X -T-0X)=T+0X+X f(X)-X
<I+60X + f(B) - X?

In addition, we note an elementary inequality: for any 0 < 6 < 3/B,

eQB_ _ 00 E 0o 2 )
f(B)zileB:%Z(aB) g%Z(QB) e

2 | k—2 _
B P k! P 3 1 6B/3
= e‘”‘<I+9X+ﬂ-X2
= 1-0B/3

Since X is zero-mean, one further has

E[eX] =T+ 1_929/;/3]E[X2] =< exp <02/2E[X2]>

Finish by observing log is monotone
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Appendix: asymptotic notation

e J(n) < g(n) or f(n) = O(g(n)) means

limsup|f(n)‘ < const
n—oo  |g(n)]

e f(n) Z g(n)or f(n) =g(n
|

)) means
(
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