The Power of Preconditioning in
Overparameterized Low-Rank Matrix Sensing
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Low-rank matrices in data science
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Low-rank matrix recovery
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Low-rank matrix factorization
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Low-rank matrix factorization
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Low-rank matrix factorization
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Prior art: GD with balancing regularization

min  freg(X,Y) = 2Hy AXYT) H

)

Apex vy |

e Spectral initialization: find an initial point

“Basin of attraction” in the “basin of attraction
’ (Xo,Y0) <= SVD, (A" (y))
e Gradient iterations: fort =0,1,...
Xi11 = Xt — VX freg( X1, Y7)

— n+1 :n—?'IVYfreg(Xh},t)
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Prior theory for vanilla GD

Umax(M)

Condition number Kk = Fmnin (M)

Theorem 1 (Tu et al., ICML 2016)

For low-rank matrix sensing with i.i.d. Gaussian design, vanilla GD
(with spectral initialization) achieves

1X:Y," = Mllp < £ omin(M)

e Computational: within O(rlog 1) iterations;
e Statistical: as long as the sample size satisfies

m > (ng + ng)r’k?

Similar results hold for many low-rank problems
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Convergence of vanilla gradient descent
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Condition number can be large
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Condition number can be large
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Condition number can be large
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Condition number can be large
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Can we accelerate the convergence rate of GD to O(log1)?
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A recipe: scaled gradient descent (ScaledGD)

JX.Y)=ly-AXY)I3 e Spectral initialization: find an initial point
in the “basin of attraction”

e Scaled gradient iterations: for
t=0,1,...,

X=X, —nVxf(X,Y2) (Y, v;) !
N———

preconditioner

— Yo =Y, - nVy (X, Y)) (X X,)"!
—_———

preconditioner
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A recipe: scaled gradient descent (ScaledGD)

JX.Y)=ly-AXY)I3 e Spectral initialization: find an initial point
in the “basin of attraction”

e Scaled gradient iterations: for
t=0,1,...,

X1 =X, —nVxf(X,Y,) (Y, v,)!

N———

preconditioner

— Yin =Y, —nVy f(X,Y) (X, X,)"!
——

preconditioner

- -

ScaledGD is a preconditioned gradient method
without balancing regularization
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ScaledGD for low-rank matrix completion
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Huge computational saving: ScaledGD converges in a
k-independent manner with minimal overhead
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A closer look at ScaledGD

Connection to quasi-Newton method :

Define F; = [X,',Y;"]"T € R(™+72)X"  One can write update rule as

vec(Fit1)

(R/R)"'® I, 0

0 (L;FLt)_l oI, vec(VEL(Fy))

= vec(Fy) —n
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A closer look at ScaledGD

Invariance to invertible transforms: (Tanner and Wei, '16; Mishra '16)

(Xt,Yt

M,=X,Y,]
/ /\ ﬁH =XnY,

X0, Y B
(Xet1, Yer) (X41Q,Y 111Q7 ")

— not true for GD
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Theoretical guarantees of ScaledGD

Theorem 2 (Tong, Ma and Chi, JMLR 2021)

For low-rank matrix sensing with i.i.d. Gaussian design, ScaledGD
with spectral initialization achieves

1X:Y," — Mllp S € - omin(M)

e Computational: within O(logl) iterations
e Statistical: the sample complexity satisfies

m > (ny + ng)rx?
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Theoretical guarantees of ScaledGD

Theorem 2 (Tong, Ma and Chi, JMLR 2021)

For low-rank matrix sensing with i.i.d. Gaussian design, ScaledGD
with spectral initialization achieves

1X:Y," — Mllp S € - omin(M)

e Computational: within O(logl) iterations
e Statistical: the sample complexity satisfies

m > (ny + ng)rx?

Strict improvement over Tu et al.: ScaledGD provably accelerates
vanilla GD with the same sample complexity
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ScaledGD works more broadly

o v o1 o107 v

7T v Vv 7

O Y GV

T v 7

A Y Y S

TV 7T TV

| Robust PCA [ Matrix completion
Algorithms corrup_tion iteratio.n sample. iteratiop
fraction complexity complexity complexity
GD I klog % (uV log n)punr?k? klog %
1 ]
ScaledGD T log é (ur? V log n) pnr? k2 log %
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What if we do not know the exact rank?

So far we have assumed the exact rank is given.... what if we do not
know the exact rank?
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What if we do not know the exact rank?

So far we have assumed the exact rank is given.... what if we do not
know the exact rank?

Misspecification by overparameterization:

M=XX"T, X e RV, F>r
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What if we do not know the exact rank?

So far we have assumed the exact rank is given.... what if we do not
know the exact rank?

Misspecification by overparameterization:

M=XX", X e R™*7, F>r

ScaledGD:

X1 =X —nVxf(Xy) (X X))
——————

preconditioner

analysis break down and might be unstable...
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What if we do not know the exact rank?

So far we have assumed the exact rank is given.... what if we do not
know the exact rank?

Misspecification by overparameterization:

M=XX", X e R™*7, F>r

ScaledGD()\):

X=X —nVxf(Xy) (X, X, +21)7!

preconditioner

add regularization to stablize the preconditioner
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Theoretical guarantees

Theorem 3 (Xu, Shen, Chi, Ma, ICML 2023)

For low-rank matrix sensing with i.i.d. Gaussian design,
overparameterized ScaledGD(\) with A\ < opin (M), n< 1, and a
sufficiently small random initialization achieves

1X: X, = M|lp S € omin(M)
e Computational: within O(log rlog(kn) + log 1) iterations;
e Statistical: the sample complexity satisfies

m 2 m‘zpoly(li)

e Our analysis also enables exact convergence under random
initialization with correct rank specification
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Comparison with overparameterized GD
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Comparison with overparameterized GD
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Comparison with overparameterized GD

1 K k*log(1/e)

(Stoger and Soltanolkotabi, '21)

error
A
- ——— (—

log(1/e) GD

ScaledGD

[
'

iteration

ScaledGD picks up the signal component much faster than GD even
from small random initialization
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Comparisons with prior art

Comparison with Zhang, Fattahi, and Zhang '21

X1 =X —nVxf(X) (X, X, + M)t

preconditioner

where \; = |A(X; X, — M)||

e Local analysis: require spectral initialization

e Large sample complexity: sample complexity is n#2 poly(k),
depending on the overparameterized rank 7 rather than the true
rank r
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Extension to noisy case

Consider the noisy setting

yi = (A;, M)+ &, where & ~ ./\/(0,02)

Theorem 4 (Xu, Shen, Chi, Ma, '23)

For low-rank matrix sensing with i.i.d. Gaussian design,
overparameterized ScaledGD(\) with the same configuration as
before achieves

1X:X, — Ml S w0 /nr
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ScaledGD()\) is nearly optimal

ScaledGD(\) achieves

X:X,' — M||r < k2cv/nr
X X, S KoV

e ScaledGD()) is minimax optimal (up to x2) for recovering rank-r
matrices, cf. Candés and Plan '09

e Both the rate and sample size requirement improve over prior art

(e.g., Zhuo et al., '21, Zhang et al., '23) as ours depend on true
rank r
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Concluding remarks



Preconditioning helps!

Preconditioning

—

Preconditioning can dramatically increase the computational efficiency
of vanilla gradient methods without hurting statistical efficiency J
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Preconditioning helps!

Preconditioning

—

Preconditioning can dramatically increase the computational efficiency
of vanilla gradient methods without hurting statistical efficiency

Future directions:

e streaming/stochastic variants of ScaledGD

e generalizing the idea of ScaledGD to other learning problems
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