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Unconstrained optimization

Consider an unconstrained optimization problem

minimizeg f(x)

e For simplicity, we assume f(x) is twice differentiable

e We assume the minimizer xqp; exists, i.e.,

Topt = argmin f(x)
€T

Introduction to nonconvex optimization

7-2



Critical /stationary points

Definition 7.1

A first-order critical point of f satisfies

Vfi(x)=0

e If f is convex, any 1st-order critical point is a global minimizer
e Finding 1st-order stationary point is sufficient for convex
optimization

e Example: gradient descent (GD)
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How about nonconvex optimization?

First-order critical points could be global min, local min, local max,
saddle points...

(a) strict saddle (b) local minimum (c) global minimum

figure credit: Li et al. '16

Simple algorithms like GD could stuck at undesired stationary points J
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Types of critical points

Definition 7.2

A second-order critical point @ satisfies

Vi(x)=0 and V%f(z)>=0

For any first-order critical point :

o Vif(x) <0 —  local maximum
o Vif(x) -0 —  local minimum
o Amin(V2f(x)) <0 —  strict saddle point
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When are nonconvex problems solvable?
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(Local) strong convexity and smoothness

Definition 7.3
A twice differentiable function f : R™ +— R is said to be a-strongly
convex in a set B if for all x € B

Vif(x) = al,.

Definition 7.4
A twice differentiable function f : R™ — R is said to be S-smooth in
aset Bifforallx € B

IV2£ ()] < 6.
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Gradient descent theory revisited

Gradient descent method with step size n > 0

a:t+1 — mt o nvf(wt)

Lemma 7.5

Suppose f is a-strongly convex and [3-smooth in the local ball
Bs(xopt) == {x | || — xopt||2 < d}. Running gradient descent from
x € Bs(xopt) with n =1/ achieves linear convergence

t
o
2! — @optll2 < (1 _ 6> 129 — zontllas £=0,1,2,...
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Implications

e Condition number 3/« determines rate of convergence

e Attains c-accuracy (i.e., || 2" — Zopt||2 < €l|@opt||2) within
1
O (ﬁ log )
a e

e Needs initialization £° € Bj(xopt): basin of attraction

iterations
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Proof of Lemma 7.5

Since V f(xopt) = 0, we can rewrite GD as

HH Lopt = x' — nV f(x ) [@opt — NV f(Topt)]
[I — / V2 fx dT:| (m — Topt),

where (7) = Topt + T(@' — XTopt). By local strong convexity and
smoothness, one has
al, < Vf(x(r)) < BI,, forall0<7<1

Therefore n = 1/ yields

xr

1
0<1I,— 77/0 V2 f(x(r))dr < (1 — DI,

B

which further implies

«
L — dopell2 < (1 - B) a2 — opel
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Regularity condition

More generally, for update rule

=2 —ng(a'),

x
where g(-) : R” — R"”
Definition 7.6
g(-) is said to obey RC(y, A, §) for some g, A, 0 > 0 if

2(g(@), & — @opt) 2 pllg(@)[3 + M@ — @optll; V& € Bs(wopt)

e Negative search direction g is positively correlated with error
T — Topt = one-step improvement

e uX <1 by Cauchy-Schwarz
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RC = one-point strong convexity + smoothness

e One-point a-strong convexity:

f(xopt) — f(x) > <vf(x)7x0pt —x) + %Hm - wOPtH% (7.1)

e [-smoothness:

f(@om) — (@) < (2~ 5VI(@)) - f(@)

< (9160~ Les)+ 2| Ao

1
=33 IV ()13 (7.2)
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RC = one-point strong convexity + smoothness

Combining relations (7.1) and (7.2) yields

1
(VI (@), @ — Topt) > =@ — Topl|3 + 25 IVF @3

2
— RC holds with ;1 =1/ and A\ = «
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Example of nonconvex functions

When g(x) = Vf(x), f is not necessarily convex

f(z)
ZTopt =0
z?, x| <6,
f@) =19 5
x* + 1.5]z|(cos(|x] —6) — 1), x| >6

Introduction to nonconvex optimization 7-13



Convergence under RC

Lemma 7.7

Suppose g(-) obeys RC(u, A\, ). The update rule
(xt™! = xt — ng(x')) with n = p and =° € Bs(zopt) obeys

le* — @ope |3 < (1 — pA)" [l — aope3

e g(-): more general search directions
o example: in vanilla GD, g(z) = V f(x)

e The product p)\ determines the rate of convergence

e Attains e-accuracy within O(ﬁ log 1) iterations
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Proof of Lemma 7.7

By definition, one has

”wt-HL - wom”% = th - Ug(‘pt) - $opt”§

= ||’ — @opt|3 + 17 llg(@")3 — 201 (g(a"). &' — @opr)
< |l — @optl3 + 17llg(@")II3 — 1 (M2’ — @opell3 + nllg(2")]3)

= (1 = npA)|[&" — @optll5 +n(n — ) llg(z") |3
< (1- M)\)Hwt - xOPtH%
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A toy example: rank-1 matrix factorization
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Principal component analysis

Given M > 0 € R™ " (not necessarily low-rank), find its best rank-r
approximation:

M = argminy |Z — M||3 st. rank(Z) <r

nonconvex optimization!
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Principal component analysis
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This problem admits a closed-form solution

o let M=3%", )\luluzT be eigen-decomposition of M
()\1 > A > Apg1 2 /\n), then

r
i=1

— nonconvex, but tractable
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Optimization viewpoint

If we factorize Z = XX " with X € R™*", then it leads to a
nonconvex problem:

1
minimize x cgnxr  f(X) = 1||XX—r — M|}

To simplify exposition, set r = 1:

1
minimize, f(xz) = EHxxT - M]3
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Interesting questions

1
minimizegcrn  f(x) = ZH:mc—r — M|}

e What does the curvature behave like, at least locally around the
global minimizer?

e Where /what are the critical points? (Global geometry)
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Local linear convergence of GD

Theorem 7.8

Suppose that ||xg — vV w2 < 5f and set n = 5/\ , GD obeys

A= A2\
ot = Vvl < (1= M) o = VAl ¢ 0.

e condition number/eigengap determines rate of convergence

e Requires initialization: use spectral method?
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Proof of Theorem 7.8

— A2
15\ﬁ '

basin of attraction

It suffices to show that for all & obeying || — /A w12 <

0.25(A\1 — A\o) I, =< V2f(x) < 4.5\ 1,

Express gradient and Hessian as

Vf(x)=(xx' — M)z
V2f(x) =2z’ + ||z|31, — M
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Preliminary facts

Let A :==x — /A\ju;. It is seen that when ||A|2 <

AL —0.25(\; —

15f

M) < Jlell3 < L1sA:
NP

[A[l2]lz]l2 < (A1 — A2)/12
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Local smoothness

Triangle inequality gives

IV2f (@) < |2z’ || + ]l + || M]
< 3|3 + A < 4.5M,

where the last relation follows from |z||3 < 1.15)\;
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Local strong convexity

Recall that A = — /M\ug
zx!| = /\1u1u;r + Az +zAT — AAT
= Muiu) — 3 Az 1y (Aflz < [=2)
= Mugu] — 0.25(\ — o) T,
where last line relies on ||A||2]|x]|2 < (A1 — A2)/12. Consequently,
Vif(x) =2xx’ +|z|31, — Miuiu, — Z?:Q i,
= 20ww] + (|23 — 0.5)(\ = M) L — Mwiw] =D Nugu!
= (ll|3 — 0.5(A1 — A2) + A )ugu]
+ 37 (2]3 = 0500 = A9) = \)wiu]
= ([l = 050 — A2) = X)),
= 0.25(A\1 — AT, (A —0.25(A — A2) < [|z[3)
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Critical points of f(-)

x is a critical point, i.e., Vf(x)= (zx' — M)x =0

)

Mz = ||z3=

)

x aligns with an eigenvector of M or =0

Since Mwu; = \ju;, the set of critical points is given by

{0y U{=vNu;, i=1,...,n}
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Categorization of critical points

The critical points can be further categorized based on the Hessian:
Vi f(x) = 2z + ||2|3L, - M
e For any non-zero critical point @) = £/ Apuy:

V2f(a:k) = 2)\]€’uku;— + M — M

n n
= 2Akuku;€r + A <Z um?) — Z )\Zulu;r
i=1 i=1

= Z ()\k — )\z)uzu;r + 2)\kuku;
IRED
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Categorization of critical points (cont.)

If A1 >X>...>2 X, >0, then
o V2if(z1) =0 —  local minima

o l<k<n )\min(VZf($k)) <0, Amax(v2f(wk)) >0
—  strict saddle

e x=0: V2f(0)=—-M <0 — local maxima, strict saddle

all local are global; all saddle are strict
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A pictorial example

For example, for 2-dimensional case f(x) =

= [xx” — 117

1 . o0 1
1], strict saddles: © = {O] and + {_1]

global minima: x = + {

— No “spurious” local minima!
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Two vignettes

Two-stage approach:

|
|
|
|
|
|
|
|
basin of attraction :

smart initialization

+
local refinement
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Two vignettes

Two-stage approach:

basin of attraction

smart initialization

+
local refinement
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_/_
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Global landscape

Benign landscape:
e all local minima = global minima

e other critical points = strict saddle points

Saddle-point escaping algorithms: v

e trust-region methods

e perturbed gradient descent
e perturbed SGD
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Next steps

Generic local analysis of (regularized) gradient descent

Refined local analysis for gradient descent

Global landscape analysis

Gradient descent with random initialization

(Maybe) Gradient descent with arbitrary initialization
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