Introduction to nonconvex optimization

Cong Ma
University of Chicago, Autumn 2021

Unconstrained optimization

Consider an unconstrained optimization problem

$$minimize_{\boldsymbol{x}} \qquad f(\boldsymbol{x})$$

- ullet For simplicity, we assume f(x) is twice differentiable
- ullet We assume the minimizer x_{opt} exists, i.e.,

$$oldsymbol{x}_{\mathsf{opt}}\coloneqq \operatorname*{arg\,min}_{oldsymbol{x}}f(oldsymbol{x})$$

Critical/stationary points

Definition 7.1

A first-order critical point of f satisfies

$$\nabla f(\boldsymbol{x}) = \mathbf{0}$$

- ullet If f is convex, any 1st-order critical point is a global minimizer
- Finding 1st-order stationary point is sufficient for convex optimization
- Example: gradient descent (GD)

How about nonconvex optimization?

First-order critical points could be global min, local min, local max, saddle points...

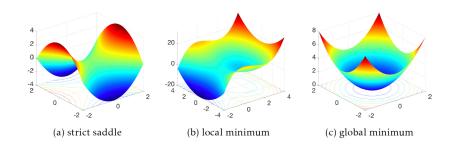


figure credit: Li et al. '16

Simple algorithms like GD could stuck at undesired stationary points

Types of critical points

Definition 7.2

A second-order critical point x satisfies

$$abla f(oldsymbol{x}) = oldsymbol{0} \quad \text{and} \quad
abla^2 f(oldsymbol{x}) \succeq oldsymbol{0}$$

For any first-order critical point x:

- $\nabla^2 f(\boldsymbol{x}) \prec \boldsymbol{0}$
- • $\nabla^2 f(\boldsymbol{x}) \succ \mathbf{0}$
- $\lambda_{\min}(\nabla^2 f(x)) < 0$ \rightarrow strict saddle point

When are nonconvex problems solvable?

(Local) strong convexity and smoothness

Definition 7.3

A twice differentiable function $f: \mathbb{R}^n \to \mathbb{R}$ is said to be α -strongly convex in a set \mathcal{B} if for all $x \in \mathcal{B}$

$$\nabla^2 f(\boldsymbol{x}) \succeq \alpha \boldsymbol{I}_n.$$

Definition 7.4

A twice differentiable function $f:\mathbb{R}^n\mapsto\mathbb{R}$ is said to be β -smooth in a set \mathcal{B} if for all $x\in\mathcal{B}$

$$\|\nabla^2 f(\boldsymbol{x})\| \le \beta.$$

Gradient descent theory revisited

Gradient descent method with step size $\eta>0\,$

$$\boldsymbol{x}^{t+1} = \boldsymbol{x}^t - \eta \nabla f(\boldsymbol{x}^t)$$

Lemma 7.5

Suppose f is α -strongly convex and β -smooth in the local ball $\mathcal{B}_{\delta}(x_{\mathrm{opt}}) \coloneqq \{x \mid \|x - x_{\mathrm{opt}}\|_2 \leq \delta\}$. Running gradient descent from $x^0 \in \mathcal{B}_{\delta}(x_{\mathrm{opt}})$ with $\eta = 1/\beta$ achieves linear convergence

$$\|\boldsymbol{x}^t - \boldsymbol{x}_{\mathsf{opt}}\|_2 \le \left(1 - \frac{\alpha}{\beta}\right)^t \|\boldsymbol{x}^0 - \boldsymbol{x}_{\mathsf{opt}}\|_2, \quad t = 0, 1, 2, \dots$$

Implications

- Condition number β/α determines rate of convergence
- Attains arepsilon-accuracy (i.e., $\|m{x}^t m{x}_{\mathsf{opt}}\|_2 \leq arepsilon \|m{x}_{\mathsf{opt}}\|_2$) within

$$O\left(\frac{\beta}{\alpha}\log\frac{1}{\varepsilon}\right)$$

iterations

ullet Needs initialization $oldsymbol{x}^0 \in \mathcal{B}_\delta(oldsymbol{x}_{ extsf{opt}})$: basin of attraction

Proof of Lemma 7.5

Since $\nabla f(x_{\sf opt}) = \mathbf{0}$, we can rewrite GD as

$$\begin{split} \boldsymbol{x}^{t+1} - \boldsymbol{x}_{\mathsf{opt}} &= \boldsymbol{x}^t - \eta \nabla f(\boldsymbol{x}^t) - [\boldsymbol{x}_{\mathsf{opt}} - \eta \nabla f(\boldsymbol{x}_{\mathsf{opt}})] \\ &= \left[\boldsymbol{I}_n - \eta \int_0^1 \nabla^2 f(\boldsymbol{x}(\tau)) \mathsf{d}\tau\right] (\boldsymbol{x}^t - \boldsymbol{x}_{\mathsf{opt}}), \end{split}$$

where $x(\tau) := x_{\sf opt} + \tau(x^t - x_{\sf opt})$. By local strong convexity and smoothness, one has

$$\alpha \mathbf{I}_n \preceq \nabla^2 f(\mathbf{x}(\tau)) \preceq \beta \mathbf{I}_n, \quad \text{for all } 0 \leq \tau \leq 1$$

Therefore $\eta = 1/\beta$ yields

$$\mathbf{0} \leq \mathbf{I}_n - \eta \int_0^1 \nabla^2 f(\mathbf{x}(\tau)) d\tau \leq (1 - \frac{\alpha}{\beta}) \mathbf{I}_n,$$

which further implies

$$\|oldsymbol{x}^{t+1} - oldsymbol{x}_{\mathsf{opt}}\|_2 \leq \left(1 - rac{lpha}{eta}
ight) \|oldsymbol{x}^t - oldsymbol{x}_{\mathsf{opt}}\|_2$$

Regularity condition

More generally, for update rule

$$\boldsymbol{x}^{t+1} = \boldsymbol{x}^t - \eta \boldsymbol{g}(\boldsymbol{x}^t),$$

where $g(\cdot): \mathbb{R}^n \mapsto \mathbb{R}^n$

Definition 7.6

 ${m g}(\cdot)$ is said to obey ${\sf RC}(\mu,\lambda,\delta)$ for some $\mu,\lambda,\delta>0$ if

$$2\langle oldsymbol{g}(oldsymbol{x}), oldsymbol{x} - oldsymbol{x}_{\mathsf{opt}}
angle \geq \mu \|oldsymbol{g}(oldsymbol{x})\|_2^2 + \lambda \left\|oldsymbol{x} - oldsymbol{x}_{\mathsf{opt}}
ight\|_2^2 \quad orall oldsymbol{x} \in \mathcal{B}_{\delta}(oldsymbol{x}_{\mathsf{opt}})$$

- ullet Negative search direction g is positively correlated with error $x-x_{ ext{opt}} \Longrightarrow$ one-step improvement
- $\mu\lambda \leq 1$ by Cauchy-Schwarz

RC = one-point strong convexity + smoothness

• One-point α -strong convexity:

$$f(\boldsymbol{x}_{\mathsf{opt}}) - f(\boldsymbol{x}) \ge \langle \nabla f(\boldsymbol{x}), \boldsymbol{x}_{\mathsf{opt}} - \boldsymbol{x} \rangle + \frac{\alpha}{2} \|\boldsymbol{x} - \boldsymbol{x}_{\mathsf{opt}}\|_2^2$$
 (7.1)

• β -smoothness:

$$f(\boldsymbol{x}_{\text{opt}}) - f(\boldsymbol{x}) \leq f\left(\boldsymbol{x} - \frac{1}{\beta}\nabla f(\boldsymbol{x})\right) - f(\boldsymbol{x})$$

$$\leq \left\langle \nabla f(\boldsymbol{x}), -\frac{1}{\beta}\nabla f(\boldsymbol{x}) \right\rangle + \frac{\beta}{2} \left\| \frac{1}{\beta}\nabla f(\boldsymbol{x}) \right\|_{2}^{2}$$

$$= -\frac{1}{2\beta} \left\| \nabla f(\boldsymbol{x}) \right\|_{2}^{2}$$
(7.2)

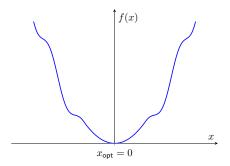
RC = one-point strong convexity + smoothness

Combining relations (7.1) and (7.2) yields

$$\langle
abla f(m{x}), m{x} - m{x}_{\mathsf{opt}}
angle \geq rac{lpha}{2} \|m{x} - m{x}_{\mathsf{opt}}\|_2^2 + rac{1}{2eta} \|
abla f(m{x})\|_2^2$$
 — RC holds with $\mu = 1/eta$ and $\lambda = lpha$

Example of nonconvex functions

When $g(x) = \nabla f(x)$, f is not necessarily convex



$$f(x) = \begin{cases} x^2, & |x| \le 6, \\ x^2 + 1.5|x|(\cos(|x| - 6) - 1), & |x| > 6 \end{cases}$$

Convergence under RC

Lemma 7.7

Suppose $g(\cdot)$ obeys $RC(\mu, \lambda, \delta)$. The update rule $(x^{t+1} = x^t - \eta g(x^t))$ with $\eta = \mu$ and $x^0 \in \mathcal{B}_{\delta}(x_{\text{opt}})$ obeys

$$\|\boldsymbol{x}^t - \boldsymbol{x}_{\mathsf{opt}}\|_2^2 \leq (1 - \textcolor{red}{\mu \lambda})^t \, \|\boldsymbol{x}^0 - \boldsymbol{x}_{\mathsf{opt}}\|_2^2$$

- $g(\cdot)$: more general search directions • example: in vanilla GD, $g(x) = \nabla f(x)$
- The product $\mu\lambda$ determines the rate of convergence
- Attains ε -accuracy within $O(\frac{1}{\mu\lambda}\log\frac{1}{\varepsilon})$ iterations

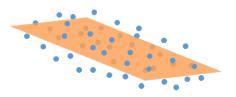
Proof of Lemma 7.7

By definition, one has

$$\begin{split} \| \boldsymbol{x}^{t+1} - \boldsymbol{x}_{\mathsf{opt}} \|_2^2 &= \| \boldsymbol{x}^t - \eta \boldsymbol{g}(\boldsymbol{x}^t) - \boldsymbol{x}_{\mathsf{opt}} \|_2^2 \\ &= \| \boldsymbol{x}^t - \boldsymbol{x}_{\mathsf{opt}} \|_2^2 + \eta^2 \| \boldsymbol{g}(\boldsymbol{x}^t) \|_2^2 - 2\eta \left\langle \boldsymbol{g}(\boldsymbol{x}^t), \boldsymbol{x}^t - \boldsymbol{x}_{\mathsf{opt}} \right\rangle \\ &\leq \| \boldsymbol{x}^t - \boldsymbol{x}_{\mathsf{opt}} \|_2^2 + \eta^2 \| \boldsymbol{g}(\boldsymbol{x}^t) \|_2^2 - \eta \left(\lambda \| \boldsymbol{x}^t - \boldsymbol{x}_{\mathsf{opt}} \|_2^2 + \mu \| \boldsymbol{g}(\boldsymbol{x}^t) \|_2^2 \right) \\ &= (1 - \eta \lambda) \| \boldsymbol{x}^t - \boldsymbol{x}_{\mathsf{opt}} \|_2^2 + \eta (\eta - \mu) \| \boldsymbol{g}(\boldsymbol{x}^t) \|_2^2 \\ &\leq (1 - \mu \lambda) \| \boldsymbol{x}^t - \boldsymbol{x}_{\mathsf{opt}} \|_2^2 \end{split}$$

A toy example: rank-1 matrix factorization

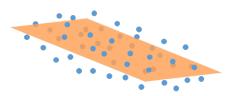
Principal component analysis



Given $M \succeq \mathbf{0} \in \mathbb{R}^{n \times n}$ (not necessarily low-rank), find its best rank-r approximation:

$$\widehat{\boldsymbol{M}} = \operatorname{argmin}_{\boldsymbol{Z}} \|\boldsymbol{Z} - \boldsymbol{M}\|_{\mathrm{F}}^2 \quad \text{s.t.} \quad \operatorname{rank}(\boldsymbol{Z}) \leq r$$
 nonconvex optimization!

Principal component analysis



This problem admits a closed-form solution

• let $M = \sum_{i=1}^n \lambda_i u_i u_i^{ op}$ be eigen-decomposition of M $(\lambda_1 \geq \cdots \lambda_r > \lambda_{r+1} \geq \lambda_n)$, then

$$\widehat{m{M}} = \sum_{i=1}^r \lambda_i m{u}_i m{u}_i^ op$$

— nonconvex, but tractable

Optimization viewpoint

If we factorize $Z = XX^{\top}$ with $X \in \mathbb{R}^{n \times r}$, then it leads to a nonconvex problem:

$$\mathsf{minimize}_{\boldsymbol{X} \in \mathbb{R}^{n \times r}} \quad f(\boldsymbol{X}) = \frac{1}{4} \|\boldsymbol{X}\boldsymbol{X}^\top - \boldsymbol{M}\|_{\mathrm{F}}^2$$

To simplify exposition, set r = 1:

$$\mathsf{minimize}_{\boldsymbol{x}} \quad f(\boldsymbol{x}) = \frac{1}{4} \|\boldsymbol{x}\boldsymbol{x}^\top - \boldsymbol{M}\|_{\mathrm{F}}^2$$

Interesting questions

$$\mathsf{minimize}_{\boldsymbol{x} \in \mathbb{R}^n} \quad f(\boldsymbol{x}) = \frac{1}{4} \|\boldsymbol{x} \boldsymbol{x}^\top - \boldsymbol{M}\|_{\mathrm{F}}^2$$

- What does the curvature behave like, at least locally around the global minimizer?
- Where / what are the critical points? (Global geometry)

Local linear convergence of GD

Theorem 7.8

Suppose that
$$\|x_0-\sqrt{\lambda_1}u_1\|_2\leq rac{\lambda_1-\lambda_2}{15\sqrt{\lambda_1}}$$
 and set $\eta=rac{1}{4.5\lambda_1}$, GD obeys

$$\|\boldsymbol{x}^{t} - \sqrt{\lambda_{1}}\boldsymbol{u}_{1}\|_{2} \leq \left(1 - \frac{\lambda_{1} - \lambda_{2}}{18\lambda_{1}}\right)^{t} \|\boldsymbol{x}^{0} - \sqrt{\lambda_{1}}\boldsymbol{u}_{1}\|_{2}, \quad t \geq 0,$$

- condition number/eigengap determines rate of convergence
- Requires initialization: use spectral method?

Proof of Theorem 7.8

It suffices to show that for all x obeying $\|x - \sqrt{\lambda_1}u_1\|_2 \leq \frac{\lambda_1 - \lambda_2}{15\sqrt{\lambda_1}}$, basin of attraction

$$0.25(\lambda_1 - \lambda_2)\boldsymbol{I}_n \leq \nabla^2 f(\boldsymbol{x}) \leq 4.5\lambda_1 \boldsymbol{I}_n$$

Express gradient and Hessian as

$$abla f(oldsymbol{x}) = (oldsymbol{x} oldsymbol{x}^{ op} - oldsymbol{M}) oldsymbol{x}
abla^2 f(oldsymbol{x}) = 2 oldsymbol{x} oldsymbol{x}^{ op} + \|oldsymbol{x}\|_2^2 oldsymbol{I}_n - oldsymbol{M}$$

Preliminary facts

Let
$$\Delta\coloneqq x-\sqrt{\lambda_1}u_1$$
. It is seen that when $\|\Delta\|_2\leq \frac{\lambda_1-\lambda_2}{15\sqrt{\lambda_1}}$, one has
$$\lambda_1-0.25(\lambda_1-\lambda_2)\leq \|x\|_2^2\leq 1.15\lambda_1;$$

$$\|\Delta\|_2\leq \|x\|_2;$$

$$\|\Delta\|_2\|x\|_2\leq (\lambda_1-\lambda_2)/12$$

Local smoothness

Triangle inequality gives

$$\|\nabla^2 f(\boldsymbol{x})\| \le \|2\boldsymbol{x}\boldsymbol{x}^\top\| + \|\boldsymbol{x}\|_2^2 + \|\boldsymbol{M}\|$$

 $\le 3\|\boldsymbol{x}\|_2^2 + \lambda_1 < 4.5\lambda_1,$

where the last relation follows from $\|m{x}\|_2^2 \leq 1.15\lambda_1$

Local strong convexity

Recall that
$$\mathbf{\Delta} = \mathbf{x} - \sqrt{\lambda_1} \mathbf{u}_1$$

$$\mathbf{x} \mathbf{x}^\top = \lambda_1 \mathbf{u}_1 \mathbf{u}_1^\top + \mathbf{\Delta} \mathbf{x}^\top + \mathbf{x} \mathbf{\Delta}^\top - \mathbf{\Delta} \mathbf{\Delta}^\top$$

$$\succeq \lambda_1 \mathbf{u}_1 \mathbf{u}_1^\top - 3 \|\mathbf{\Delta}\|_2 \|\mathbf{x}\|_2 \mathbf{I}_n \qquad (\|\mathbf{\Delta}\|_2 \le \|\mathbf{x}\|_2)$$

$$\succ \lambda_1 \mathbf{u}_1 \mathbf{u}_1^\top - 0.25 (\lambda_1 - \lambda_2) \mathbf{I}_n,$$

where last line relies on $\|\mathbf{\Delta}\|_2 \|\mathbf{x}\|_2 \leq (\lambda_1 - \lambda_2)/12$. Consequently,

$$\nabla^{2} f(\boldsymbol{x}) = 2\boldsymbol{x}\boldsymbol{x}^{\top} + \|\boldsymbol{x}\|_{2}^{2} \boldsymbol{I}_{n} - \lambda_{1} \boldsymbol{u}_{1} \boldsymbol{u}_{1}^{\top} - \sum_{i=2}^{n} \lambda_{i} \boldsymbol{u}_{i} \boldsymbol{u}_{i}^{\top}$$

$$\succeq 2\lambda_{1} \boldsymbol{u}_{1} \boldsymbol{u}_{1}^{\top} + (\|\boldsymbol{x}\|_{2}^{2} - 0.5)(\lambda_{1} - \lambda_{2}) \boldsymbol{I}_{n} - \lambda_{1} \boldsymbol{u}_{1} \boldsymbol{u}_{1}^{\top} - \sum_{i=2}^{n} \lambda_{i} \boldsymbol{u}_{i} \boldsymbol{u}_{i}^{\top}$$

$$\succeq (\|\boldsymbol{x}\|_{2}^{2} - 0.5(\lambda_{1} - \lambda_{2}) + \lambda_{1}) \boldsymbol{u}_{1} \boldsymbol{u}_{1}^{\top}$$

$$+ \sum_{i=2}^{n} (\|\boldsymbol{x}\|_{2}^{2} - 0.5(\lambda_{1} - \lambda_{2}) - \lambda_{i}) \boldsymbol{u}_{i} \boldsymbol{u}_{i}^{\top}$$

$$\succeq (\|\boldsymbol{x}\|_{2}^{2} - 0.5(\lambda_{1} - \lambda_{2}) - \lambda_{2}) \boldsymbol{I}_{n}$$

$$\succeq 0.25(\lambda_{1} - \lambda_{2}) \boldsymbol{I}_{n} \qquad (\lambda_{1} - 0.25(\lambda_{1} - \lambda_{2}) < \|\boldsymbol{x}\|_{2}^{2})$$

Critical points of $f(\cdot)$

$$m{x}$$
 is a critical point, i.e., $abla f(m{x}) = (m{x}m{x}^ op - m{M})m{x} = m{0}$
$$\updownarrow \\ m{M}m{x} = \|m{x}\|_2^2 m{x}$$

$$\updownarrow$$

x aligns with an eigenvector of $oldsymbol{M}$ or $x=oldsymbol{0}$

Since $oldsymbol{M}oldsymbol{u}_i=\lambda_ioldsymbol{u}_i$, the set of critical points is given by

$$\{\mathbf{0}\} \cup \{\pm \sqrt{\lambda_i} \mathbf{u}_i, i = 1, \dots, n\}$$

Categorization of critical points

The critical points can be further categorized based on the **Hessian**:

$$\nabla^2 f(\boldsymbol{x}) = 2\boldsymbol{x}\boldsymbol{x}^\top + \|\boldsymbol{x}\|_2^2 \boldsymbol{I}_n - \boldsymbol{M}$$

ullet For any non-zero critical point $oldsymbol{x}_k = \pm \sqrt{\lambda_k} oldsymbol{u}_k$:

$$\nabla^{2} f(\boldsymbol{x}_{k}) = 2\lambda_{k} \boldsymbol{u}_{k} \boldsymbol{u}_{k}^{\top} + \lambda_{k} \boldsymbol{I} - \boldsymbol{M}$$

$$= 2\lambda_{k} \boldsymbol{u}_{k} \boldsymbol{u}_{k}^{\top} + \lambda_{k} \left(\sum_{i=1}^{n} \boldsymbol{u}_{i} \boldsymbol{u}_{i}^{\top} \right) - \sum_{i=1}^{n} \lambda_{i} \boldsymbol{u}_{i} \boldsymbol{u}_{i}^{\top}$$

$$= \sum_{i:i \neq k} (\lambda_{k} - \lambda_{i}) \boldsymbol{u}_{i} \boldsymbol{u}_{i}^{\top} + 2\lambda_{k} \boldsymbol{u}_{k} \boldsymbol{u}_{k}^{\top}$$

Categorization of critical points (cont.)

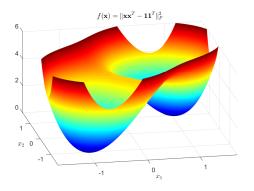
If
$$\lambda_1 > \lambda_2 \geq \ldots \geq \lambda_n \geq 0$$
, then

- $\nabla^2 f(x_1) \succ \mathbf{0}$ \rightarrow local minima
- $1 < k \le n$: $\lambda_{\min}(\nabla^2 f(\boldsymbol{x}_k)) < 0$, $\lambda_{\max}(\nabla^2 f(\boldsymbol{x}_k)) > 0$ \rightarrow strict saddle
- x = 0: $\nabla^2 f(0) = -M \leq 0$ \rightarrow local maxima, strict saddle

all local are global; all saddle are strict

A pictorial example

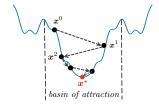
For example, for 2-dimensional case $f(x) = \left\|xx^{\top} - \begin{bmatrix}1 & 1\\1 & 1\end{bmatrix}\right\|_{\mathrm{F}}^2$



global minima:
$$x=\pm \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
; strict saddles: $x=\begin{bmatrix} 0 \\ 0 \end{bmatrix}$, and $\pm \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ — No "spurious" local minima!

Two vignettes

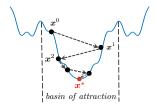
Two-stage approach:



smart initialization + local refinement

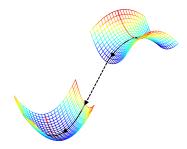
Two vignettes

Two-stage approach:



smart initialization + local refinement

Global landscape:



benign landscape + saddle-point escaping

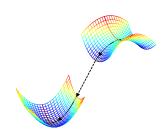
Global landscape

Benign landscape:

- all local minima = global minima
- other critical points = strict saddle points

Saddle-point escaping algorithms:

- trust-region methods
- perturbed gradient descent
- perturbed SGD
- ...



Next steps

- Generic local analysis of (regularized) gradient descent
- Refined local analysis for gradient descent
- Global landscape analysis
- Gradient descent with random initialization
- (Maybe) Gradient descent with arbitrary initialization