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Outline

• Strict saddle property
• Global landscape analysis: matrix sensing
• Gradient descent with random initialization: phase retrieval
• Generic saddle-escaping algorithms

Analysis of global convergence: random initialization 10-2



Rationale of two-stage approach
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1. initialize within local basin sufficiently close to x♮

︸ ︷︷ ︸
(restricted) strongly convex

2. iterative refinement
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Is careful initialization necessary for fast convergence?



Initialization
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• spectral initialization gets us to (restricted) strongly cvx region

• cannot initialize GD anywhere, e.g., might get stuck at saddles

Can we initialize GD randomly, which is simpler and model-agnostic?
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Generic saddle-escaping algorithms



Strict saddle property: qualitative version

All critical points can be classified into two categories
• local minimizers
• strict saddle points: Hessian has a strictly negative eigenvalue

Let x be a critical point. Taylor expansion yields

f(x + ∆) ≈ f(x) + 1
2∆

⊤∇2f(x)∆
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GD converges to local minimizers

Theorem 10.1
Consider any twice continuously differentiable function f that satisfies
the strict saddle property. If η < 1/β with β the smoothness
parameter, then GD with a random initialization converges to a local
minimizer or −∞ almost surely.

• This also holds for other optimization algorithms
• Exponential time for GD to converge in the worst case
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An example: low-rank matrix sensing



Low-rank matrix sensing

• Groundtruth: rank-r psd matrix M⋆ = X⋆X⋆⊤ ∈ Rn×n

• Observations:

yi = ⟨Ai,M
⋆⟩, for 1 ≤ i ≤ m

• Goal: recover M⋆ based on linear measurements {Ai, yi}1≤i≤m
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Restricted isometry property (RIP)

Define linear operator A : Rn1×n2 7→ Rm to be

A(M) = [m−1/2⟨Ai,M⟩]1≤i≤m

Definition 10.2
The operator A is said to satisfy r-RIP with RIP constant δr < 1 if

(1 − δr)∥M∥2
F ≤ ∥A(M)∥2

2 ≤ (1 + δr)∥M∥2
F

holds simultaneously for all M of rank at most r.
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An optimization-based method

Then least-squares estimation yields

minimize
X∈Rn×r

f(X) = 1
4m

m∑

i=1

(
⟨Ai,XX⊤⟩ − yi

)2
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Global landscape

Theorem 10.3
Assume that the measurement operator A satisfies 2r-RIP with RIP
constant δ2r ≤ 1/10. Then for the matrix sensing objective, one has

• For any critical point U that is not a local minimum, one has
λmin(∇2f(U)) ≤ −2/5σr(M⋆);

• All local minimizers are global.

• Matrix sensing obeys strict saddle property
• In addition, all local minimizers are global — GD converges to

global minimizer
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Strict saddle property: quantitative version

Definition 10.4
A function f(·) is said to satisfy the (ε, γ, ξ)-strict saddle property for
some positive ε, γ, ξ, if for each x, at least one of the following is true

• (strong gradient) ∥∇f(x)∥2 ≥ ε;
• (negative curvature) λmin(∇2f(x)) ≤ −γ;
• (local minimum) there exists a local minimum x⋆ such that

∥x − x⋆∥2 ≤ ξ.
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Saddle-escaping algorithms

f(x + ∆) ≈ f(x) + 1
2∆

⊤∇2f(x)∆

A rough categorization:
• Hessian-based algorithms
• Gradient-based algorithms
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Another example: phase retrieval



Solving quadratic systems of equationsA

x

Ax

1

A

x

Ax

1

A

x

Ax

1

A

x

Ax

y = |Ax|2

1

 1 

-3 

 2 

-1 

 4 

 2 
-2 

-1 

 3 

 4 

 1 

 9 

 4 

 1 

16 

 4 
 4 

 1 

 9 

16 

Recover x♮ ∈ Rn from m random quadratic measurements

yk =
(
a⊤

k x
♮)2 + noise, k = 1, . . . , m

assume w.l.o.g. ∥x♮∥2 = 1
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A natural least-squares formulation

given: yk = (a⊤
k x

⋆)2, 1 ≤ k ≤ m

⇓

minimizex∈Rn f(x) = 1
4m
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What does prior theory say?

0

0.1

0.01

0.02

0.05

0.03

0.04

0

-0.05 1.11.081.061.041.0210.980.96-0.1 0.940.920.9

global minimum

0.655

0.66

0.65

0.665

0.67

0.10.6

0.675

0.05
0.55 0

-0.050.5
-0.1

saddle point

• landscape: no spurious local mins (Sun et al. ’16)

• randomly initialized GD converges almost surely (Lee et al. ’16)

“almost surely” might mean “takes forever”
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Numerical efficiency of randomly initialized GD

η = 0.1, ai ∼ N (0, In), m = 10n, x0 ∼ N (0, n−1In)
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Our theory: noiseless case

These numerical findings can be formalized when ai
i.i.d.∼ N (0, In):

dist(xt,x♮) := min{∥xt ± x♮∥2}

Theorem 10.5 (Chen, Chi, Fan, Ma ’18)
Under i.i.d. Gaussian design, GD with x0 ∼ N (0, n−1In) achieves

dist(xt,x♮) ≤ γ(1 − ρ)t−Tγ ∥x♮∥2, t ≥ Tγ

for Tγ ≲ log n and some constants γ, ρ > 0, provided that step size
η ≍ 1 and sample size m ≳ n poly log m

Analysis of global convergence: random initialization 10-21



Our theory: noiseless case

These numerical findings can be formalized when ai
i.i.d.∼ N (0, In):

dist(xt,x♮) := min{∥xt ± x♮∥2}

Theorem 10.5 (Chen, Chi, Fan, Ma ’18)
Under i.i.d. Gaussian design, GD with x0 ∼ N (0, n−1In) achieves

dist(xt,x♮) ≤ γ(1 − ρ)t−Tγ ∥x♮∥2, t ≥ Tγ

for Tγ ≲ log n and some constants γ, ρ > 0, provided that step size
η ≍ 1 and sample size m ≳ n poly log m

Analysis of global convergence: random initialization 10-21



Our theory: noiseless case

These numerical findings can be formalized when ai
i.i.d.∼ N (0, In):

dist(xt,x♮) := min{∥xt ± x♮∥2}

Theorem 10.5 (Chen, Chi, Fan, Ma ’18)
Under i.i.d. Gaussian design, GD with x0 ∼ N (0, n−1In) achieves

dist(xt,x♮) ≤ γ(1 − ρ)t−Tγ ∥x♮∥2, t ≥ Tγ

for Tγ ≲ log n and some constants γ, ρ > 0, provided that step size
η ≍ 1 and sample size m ≳ n poly log m

Analysis of global convergence: random initialization 10-21



Our theory

dist(xt,x♮) ≤ γ(1 − ρ)t−Tγ ∥x♮∥2, t ≥ Tγ ≍ log n
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Theoretical guarantees

Theorem 1
Under i.i.d. Gaussian design, GD with x0 ≥ N (0, n≠1In) achieves

dist(xt,x¯) Æ “(1 ≠ fl)t≠T“ Îx¯Î2, t Ø T“

with prob. 1 ≠ o(1) for T“ . logn and some small constants “, fl > 0,
provided that step size ÷ ® 1 and sample size m & n poly logm
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• Stage 1: takes O(logn) iterations to reach dist(xt,x¯) Æ “

• Stage 2: linear convergence
• near-optimal compututational cost
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• Stage 1: takes O(log n) iterations to reach dist(xt,x♮) ≤ γ

• Stage 2: linear (geometric) convergence

• near-optimal computational cost:
— O

(
log n + log 1

ε

)
iterations to yield ε accuracy

• near-optimal sample size: m ≳ npoly log m
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Our theory
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Theoretical guarantees

Theorem 1
Under i.i.d. Gaussian design, GD with x0 ≥ N (0, n≠1In) achieves

dist(xt,x¯) Æ “(1 ≠ fl)t≠T“ Îx¯Î2, t Ø T“

with prob. 1 ≠ o(1) for T“ . logn and some small constants “, fl > 0,
provided that step size ÷ ® 1 and sample size m & n poly logm

• Stage 1: takes O(logn) iterations to reach dist(xt,x¯) Æ “

• Stage 2: linear convergence
• near-optimal compututational cost

— O
!
logn+ log 1

Á

"
iterations to yield Á accuracy

• near-optimal sample size
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We can then complete proof as long as we can show
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• Stage 1: takes O(logn) iterations to
reach dist(xt,x¯) Æ “

• Stage 2: linear convergence

• near-optimal compututational cost:
O

!
logn+ log 1

Á

"
iterations to yield Á

accuracy
• near-optimal sample size
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• Stage 1: takes O(log n) iterations to reach dist(xt,x♮) ≤ γ

• Stage 2: linear (geometric) convergence

• near-optimal computational cost:
— O

(
log n + log 1

ε

)
iterations to yield ε accuracy

• near-optimal sample size: m ≳ npoly log m
Analysis of global convergence: random initialization 10-22



Generic algorithm design and analysis

iteration complexity
trust-region

(Sun et al. ’16) n7 + log log 1
ε

perturbed GD
(Jin et al. ’17) n3 + n log 1

ε

perturbed accelerated
GD

(Jin et al. ’17)
n2.5 +

√
n log 1

ε

GD (ours)
(Chen et al. ’18) log n + log 1

ε

Generic optimization theory yields highly suboptimal convergence
guarantees

Analysis of global convergence: random initialization 10-23



What we have not discussed so far

• A lot of interesting problems that nonconvex optimization could
work, e.g., robust PCA, tensor estimation, mixture models, etc.

• A lot of algorithms, e.g., expectation maximization, alternating
minimization, scaledGD, etc.

• Inference for nonconvex estimators
• Connections between nonconvex and convex estimators

Analysis of global convergence: random initialization 10-24


