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Strict saddle property

Global landscape analysis: matrix sensing

Gradient descent with random initialization: phase retrieval

Generic saddle-escaping algorithms
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Rationale of two-stage approach
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1. initialize within local basin sufficiently close to %

(restricted) strongly convex

2. iterative refinement
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Is careful initialization necessary for fast convergence?



Initialization

spectral
initialization|

e spectral initialization gets us to (restricted) strongly cvx region
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Initialization

saddle points

spectral
initialization|

e spectral initialization gets us to (restricted) strongly cvx region

e cannot initialize GD anywhere, e.g., might get stuck at saddles
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Initialization

saddle points

spectral
initialization|

random
initialization

e spectral initialization gets us to (restricted) strongly cvx region

e cannot initialize GD anywhere, e.g., might get stuck at saddles

Can we initialize GD randomly, which is simpler and model—agnostic?)
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Generic saddle-escaping algorithms



Strict saddle property: qualitative version

All critical points can be classified into two categories
e local minimizers

e strict saddle points: Hessian has a strictly negative eigenvalue

Let x be a critical point. Taylor expansion yields

f@+ A) = f(2) + ATV f(2)A
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GD converges to local minimizers

Theorem 10.1

Consider any twice continuously differentiable function f that satisfies
the strict saddle property. If n < 1/ with 3 the smoothness
parameter, then GD with a random initialization converges to a local
minimizer or —oo almost surely.

e This also holds for other optimization algorithms

e Exponential time for GD to converge in the worst case
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An example: low-rank matrix sensing



Low-rank matrix sensing

e Groundtruth: rank-r psd matrix M* = X*X*T € R™*"

e Observations:
yi = (A, M™), for1<i<m

e Goal: recover M* based on linear measurements {A;, i} 1<i<m
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Restricted isometry property (RIP)

Define linear operator A : R™*"2 — R™ to be
A(M) = [m (A, M)]1<i<m
Definition 10.2 |
The operator A is said to satisfy 7-RIP with RIP constant ¢, < 1 if
(1 =0, |MIE < JAM)E < (1+6,)| M|

holds simultaneously for all M of rank at most r.
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An optimization-based method

Then least-squares estimation yields

1 2
X)=—— AL XX =y
mmze 0= 353 (140 XXT) —u)
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Global landscape

Theorem 10.3 |

Assume that the measurement operator A satisfies 2r-RIP with RIP
constant d < 1/10. Then for the matrix sensing objective, one has

e For any critical point U that is not a local minimum, one has
Amin(V2f(U)) < —2/50,.(M*);

o All local minimizers are global.

e Matrix sensing obeys strict saddle property

e In addition, all local minimizers are global — GD converges to
global minimizer
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Strict saddle property: quantitative version

Definition 10.4 |

A function f(-) is said to satisfy the (g,~, §)-strict saddle property for
some positive €,7, &, if for each x, at least one of the following is true

e (strong gradient) ||V f(z)|2 > ¢;
e (negative curvature) \yin(V2f(z)) < —7;

e (local minimum) there exists a local minimum x, such that
[z —@[l2 < €
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Saddle-escaping algorithms

f@+ A f@)+ ATV (@)A

A rough categorization:
e Hessian-based algorithms

e Gradient-based algorithms
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Another example: phase retrieval



Solving quadratic systems of equations

A x Az y = |Azx|?
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Recover x € R” from m random quadratic measurements
2 .
yr = (af %)~ + noise, E=1,...,m

assume w.l.o.g. ||z?|s =1
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A natural least-squares formulation

given: y = (apx*)? 1<k<m
J
N 1 & 2 2
minimizegern  f(x) = T kz::l [(ak x)” — yk}
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What does prior theory say?

global minimum saddle point

e landscape: no spurious local mins (Sun et al.'16)
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What does prior theory say?

global minimum saddle point

e landscape: no spurious local mins (Sun et al.'16)

e randomly initialized GD converges almost surely (Lee et al.'16)
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What does prior theory say?

Loading...
Z

[

global minimum saddle point

e landscape: no spurious local mins (Sun et al.'16)

e randomly initialized GD converges almost surely (Lee et al.'16)

“almost surely” might mean “takes forever” )
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Numerical efficiency of randomly initialized GD

n=0.1, a; ~N(0,I,), m = 10n, z° ~ N(0,n"11,,)

100\

relative {9 error

5| —n =100 N
107 n = 200
n = 500
n = 800
n = 1000

0 50 100 150 200
t : iteration count
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Numerical efficiency of randomly initialized GD

n=0.1, a; ~N(0,I,), m = 10n, z° ~ N(0,n"11,,)

Stage 1

1
10°

relative {9 error

10° | n = 200

0 50 100 150 200
t : iteration count

Randomly initialized GD enters local basin within a few iterations
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Numerical efficiency of randomly initialized GD

n=0.1, a; ~N(0,I,), m = 10n, z° ~ N(0,n"11,,)

Stage 1 Stage 2

relative {9 error

0 50 100 150 200
t : iteration count

Randomly initialized GD enters local basin within a few iterations
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Our theory: noiseless case

These numerical findings can be formalized when a; =" N(0,1I,,):
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Our theory: noiseless case

These numerical findings can be formalized when a; =" N(0,1I,,):

dist(xt, 2?) := min{|x? + x5}

Theorem 10.5 (Chen, Chi, Fan, Ma’18)
Under i.i.d. Gaussian design, GD with " ~ N'(0,n~11I,,) achieves
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Our theory: noiseless case

These numerical findings can be formalized when a; =" N(0,1I,,):

dist(xt, 2?) := min{|x? + x5}

Theorem 10.5 (Chen, Chi, Fan, Ma’18)
Under i.i.d. Gaussian design, GD with " ~ N'(0,n~11I,,) achieves

dist(z!,2%) < (1 - p) |22, t>T,

for Ty < logn and some constants -y, p > 0, provided that step size
n =< 1 and sample size m 2 n polylogm
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Our theory

relative ¢ error

n = 1000

0 50 100 150 200
t : iteration count
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Our theory

dist(a’, &) < y(1—p)' T |2t|2, ¢ 2T, =<logn )

O(logn)

10°*\

relative ¢y error

0 50 100 150 200
t : iteration count

e Stage 1: takes O(logn) iterations to reach dist(xf, 2%) < v
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Our theory

dist(@’, @) < (1= p)" |25, t>T, <logn J
O(logn) O(log )
100F
£
£
~ 10

0 50 100 150 200
t : iteration count

e Stage 1: takes O(logn) iterations to reach dist(xf, 2%) < v
e Stage 2: linear (geometric) convergence
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Our theory

dist(@', @) <y(1 = p)" " ||afs, t>T, <logn J
O(logn) O(log )
100F
£
=
~ 10

0 50 100 150 200
t : iteration count

e near-optimal computational cost:
— O(logn + log ) iterations to yield & accuracy
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Our theory

dist(@', @) <y(1 = p)" " ||afs, t>T, <logn J
O(logn) O(log )
100F
£
=
T 0%t

0 50 100 150 200
t : iteration count

e near-optimal computational cost:
— O(logn + log ) iterations to yield & accuracy

e near-optimal sample size: m 2 npolylogm
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Generic algorithm design and analysis

iteration complexity

trust-region

(Sun et alg '16) n’ +log lOgc%
perturbed GD 3 1
(Jin et al. '17) n +nlog 2

perturbed accelerated
GD n*® + /nlog1
(Jin et al. '17)
GD (ours) - o A

(Chen et al. '18) logn +log ¢

Generic optimization theory yields highly suboptimal convergence
guarantees
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What we have not discussed so far

A lot of interesting problems that nonconvex optimization could
work, e.g., robust PCA, tensor estimation, mixture models, etc.

A lot of algorithms, e.g., expectation maximization, alternating
minimization, scaledGD, etc.

Inference for nonconvex estimators

Connections between nonconvex and convex estimators
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