STAT 37797: Mathematics of Data Science

Analysis of global convergence: random initialization

Cong Ma

University of Chicago, Winter 2024

Outline

- Strict saddle property
- Global landscape analysis: matrix sensing
- Gradient descent with random initialization: phase retrieval
- Generic saddle-escaping algorithms

1. initialize within local basin sufficiently close to x^{\ddagger}

(restricted) strongly convex

2. iterative refinement

Is careful initialization necessary for fast convergence?

Initialization

• spectral initialization gets us to (restricted) strongly cvx region

Initialization

- spectral initialization gets us to (restricted) strongly cvx region
- cannot initialize GD anywhere, e.g., might get stuck at saddles

Initialization

- spectral initialization gets us to (restricted) strongly cvx region
- cannot initialize GD anywhere, e.g., might get stuck at saddles

Can we initialize GD randomly, which is simpler and model-agnostic?

Generic saddle-escaping algorithms

All critical points can be classified into two categories

- local minimizers
- strict saddle points: Hessian has a strictly negative eigenvalue

Let x be a critical point. Taylor expansion yields

$$f(\boldsymbol{x} + \boldsymbol{\Delta}) \approx f(\boldsymbol{x}) + \frac{1}{2} \boldsymbol{\Delta}^\top \nabla^2 f(\boldsymbol{x}) \boldsymbol{\Delta}$$

Analysis of global convergence: random initialization

Theorem 10.1

Consider any twice continuously differentiable function f that satisfies the strict saddle property. If $\eta < 1/\beta$ with β the smoothness parameter, then GD with a random initialization converges to a local minimizer or $-\infty$ almost surely.

- This also holds for other optimization algorithms
- Exponential time for GD to converge in the worst case

An example: low-rank matrix sensing

- Groundtruth: rank-r psd matrix $M^{\star} = X^{\star}X^{\star \top} \in \mathbb{R}^{n imes n}$
- Observations:

$$y_i = \langle \boldsymbol{A}_i, \boldsymbol{M}^* \rangle, \quad \text{for } 1 \leq i \leq m$$

• Goal: recover M^{\star} based on linear measurements $\{A_i, y_i\}_{1 \leq i \leq m}$

Define linear operator $\mathcal{A}: \mathbb{R}^{n_1 imes n_2} \mapsto \mathbb{R}^m$ to be

$$\mathcal{A}(\boldsymbol{M}) = [m^{-1/2} \langle \boldsymbol{A}_i, \boldsymbol{M} \rangle]_{1 \le i \le m}$$

Definition 10.2

The operator $\mathcal A$ is said to satisfy r-RIP with RIP constant $\delta_r < 1$ if

$$(1 - \delta_r) \|\boldsymbol{M}\|_{\mathsf{F}}^2 \le \|\boldsymbol{\mathcal{A}}(\boldsymbol{M})\|_2^2 \le (1 + \delta_r) \|\boldsymbol{M}\|_{\mathsf{F}}^2$$

holds simultaneously for all M of rank at most r.

Then least-squares estimation yields

$$\underset{\boldsymbol{X} \in \mathbb{R}^{n \times r}}{\text{minimize}} \qquad f(\boldsymbol{X}) = \frac{1}{4m} \sum_{i=1}^{m} \left(\langle \boldsymbol{A}_i, \boldsymbol{X} \boldsymbol{X}^\top \rangle - y_i \right)^2$$

Theorem 10.3

Assume that the measurement operator A satisfies 2r-RIP with RIP constant $\delta_{2r} \leq 1/10$. Then for the matrix sensing objective, one has

- For any critical point U that is not a local minimum, one has $\lambda_{\min}(\nabla^2 f(U)) \leq -2/5\sigma_r(M^{\star});$
- All local minimizers are global.

- Matrix sensing obeys strict saddle property
- In addition, all local minimizers are global GD converges to global minimizer

Definition 10.4

A function $f(\cdot)$ is said to satisfy the $(\varepsilon, \gamma, \xi)$ -strict saddle property for some positive ε, γ, ξ , if for each x, at least one of the following is true

- (strong gradient) $\|\nabla f(x)\|_2 \ge \varepsilon$;
- (negative curvature) $\lambda_{\min}(\nabla^2 f(\boldsymbol{x})) \leq -\gamma;$
- (local minimum) there exists a local minimum x_{\star} such that $\|x x_{\star}\|_2 \leq \xi$.

$$f(\boldsymbol{x} + \boldsymbol{\Delta}) \approx f(\boldsymbol{x}) + \frac{1}{2} \boldsymbol{\Delta}^\top \nabla^2 f(\boldsymbol{x}) \boldsymbol{\Delta}$$

A rough categorization:

- Hessian-based algorithms
- Gradient-based algorithms

Another example: phase retrieval

Solving quadratic systems of equations

Recover $\boldsymbol{x}^{\natural} \in \mathbb{R}^n$ from m random quadratic measurements

$$y_k = \left(oldsymbol{a}_k^ op oldsymbol{x}^{\dagger}
ight)^2 + {\sf noise}, \qquad k=1,\ldots,m$$

assume w.l.o.g. $\|m{x}^{ar{b}}\|_2 = 1$

Analysis of global convergence: random initialization

given:
$$y_k = (\boldsymbol{a}_k^{\top} \boldsymbol{x}^{\star})^2, \quad 1 \le k \le m$$

 \Downarrow
minimize $_{\boldsymbol{x} \in \mathbb{R}^n} \quad f(\boldsymbol{x}) = \frac{1}{4m} \sum_{k=1}^m \left[(\boldsymbol{a}_k^{\top} \boldsymbol{x})^2 - y_k \right]^2$

_

Analysis of global convergence: random initialization

What does prior theory say?

• landscape: no spurious local mins (Sun et al. '16)

What does prior theory say?

- landscape: no spurious local mins (Sun et al. '16)
- randomly initialized GD converges almost surely (Lee et al. '16)

- landscape: no spurious local mins (Sun et al. '16)
- randomly initialized GD converges almost surely (Lee et al. '16)

"almost surely" might mean "takes forever"

Numerical efficiency of randomly initialized GD

$$\eta = 0.1$$
, $\boldsymbol{a}_i \sim \mathcal{N}(\boldsymbol{0}, \boldsymbol{I}_n)$, $m = 10n$, $\boldsymbol{x}^0 \sim \mathcal{N}(\boldsymbol{0}, n^{-1}\boldsymbol{I}_n)$

Numerical efficiency of randomly initialized GD

$$\eta = 0.1$$
, $\boldsymbol{a}_i \sim \mathcal{N}(\boldsymbol{0}, \boldsymbol{I}_n)$, $m = 10n$, $\boldsymbol{x}^0 \sim \mathcal{N}(\boldsymbol{0}, n^{-1}\boldsymbol{I}_n)$

Randomly initialized GD enters local basin within a few iterations

Analysis of global convergence: random initialization

Numerical efficiency of randomly initialized GD

$$\eta = 0.1$$
, $\boldsymbol{a}_i \sim \mathcal{N}(\boldsymbol{0}, \boldsymbol{I}_n)$, $m = 10n$, $\boldsymbol{x}^0 \sim \mathcal{N}(\boldsymbol{0}, n^{-1}\boldsymbol{I}_n)$

Randomly initialized GD enters local basin within a few iterations

Analysis of global convergence: random initialization

These numerical findings can be formalized when $m{a}_i \overset{\mathrm{i.i.d.}}{\sim} \mathcal{N}(m{0}, m{I}_n)$:

These numerical findings can be formalized when $a_i \overset{\text{i.i.d.}}{\sim} \mathcal{N}(\mathbf{0}, I_n)$:

 $\mathsf{dist}({m x}^t,{m x}^{\natural}):=\min\{\|{m x}^t\pm{m x}^{\natural}\|_2\}$

Theorem 10.5 (Chen, Chi, Fan, Ma'18)

Under i.i.d. Gaussian design, GD with $m{x}^0 \sim \mathcal{N}(m{0}, n^{-1} m{I}_n)$ achieves

These numerical findings can be formalized when $a_i \overset{\text{i.i.d.}}{\sim} \mathcal{N}(\mathbf{0}, I_n)$:

 $\mathsf{dist}({m x}^t,{m x}^{\natural}):=\min\{\|{m x}^t\pm{m x}^{\natural}\|_2\}$

Theorem 10.5 (Chen, Chi, Fan, Ma'18)

Under i.i.d. Gaussian design, GD with $m{x}^0 \sim \mathcal{N}(m{0}, n^{-1} m{I}_n)$ achieves

$$\operatorname{dist}(\boldsymbol{x}^{t}, \boldsymbol{x}^{\natural}) \leq \gamma (1-\rho)^{t-T_{\gamma}} \|\boldsymbol{x}^{\natural}\|_{2}, \qquad t \geq T_{\gamma}$$

for $T_{\gamma} \lesssim \log n$ and some constants $\gamma, \rho > 0$, provided that step size $\eta \asymp 1$ and sample size $m \gtrsim n$ poly $\log m$

$$\operatorname{dist}(\boldsymbol{x}^{t}, \boldsymbol{x}^{\natural}) \leq \gamma (1-\rho)^{t-T_{\gamma}} \|\boldsymbol{x}^{\natural}\|_{2}, \quad t \geq T_{\gamma} \asymp \log n$$

• Stage 1: takes $O(\log n)$ iterations to reach $dist(\boldsymbol{x}^t, \boldsymbol{x}^{\natural}) \leq \gamma$

 $\operatorname{dist}(\boldsymbol{x}^{t}, \boldsymbol{x}^{\natural}) \leq \gamma (1 - \rho)^{t - T_{\gamma}} \|\boldsymbol{x}^{\natural}\|_{2}, \quad t \geq T_{\gamma} \asymp \log n$

- Stage 1: takes $O(\log n)$ iterations to reach $dist(\boldsymbol{x}^t, \boldsymbol{x}^{\natural}) \leq \gamma$
- Stage 2: linear (geometric) convergence

• near-optimal computational cost:

 $-O(\log n + \log \frac{1}{\varepsilon})$ iterations to yield ε accuracy

• near-optimal computational cost:

 $-O(\log n + \log \frac{1}{\varepsilon})$ iterations to yield ε accuracy

• near-optimal sample size: $m\gtrsim n\mathsf{poly}\log m$

Analysis of global convergence: random initialization

Generic algorithm design and analysis

Generic optimization theory yields highly suboptimal convergence guarantees

- A lot of interesting problems that nonconvex optimization could work, e.g., robust PCA, tensor estimation, mixture models, etc.
- A lot of algorithms, e.g., expectation maximization, alternating minimization, scaledGD, etc.
- Inference for nonconvex estimators
- Connections between nonconvex and convex estimators