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Revisit phase retrieval

given: y = (apx*)? 1<k<m
\
minimizegzcrn  f(x) = i i [(ak $)2 _ yk}
im st
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Wirtinger flow (Candeés, Li, Soltanolkotabi’14)
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First theory of WF

dist(z!, £*) := min{||z’ + =*||2}
Theorem 9.1 (Candés, Li, Soltanolkotabi'14)

Under i.i.d. Gaussian design, WF with spectral initialization achieves

£/2
dist(@’ ) 5 (1= 7)ot

with high prob., provided that step size n < 1/n and sample size:
m 2 nlogn.

e lteration complexity: O(nlog?)
e Sample complexity: O(nlogn)

e Derived based on (worst-case) local geometry
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What does optimization theory say about WF?

Gaussian designs: ay N N, I,), 1<k<m
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What does optimization theory say about WF?

Gaussian designs: ay N N, I,), 1<k<m

Finite-sample level (m < nlogn)

V2f(x) =0 but ill-conditioned (even locally)

condition number < n

Consequence (Candes et al '14): WF attains e-accuracy within
O(nlog ) iterations if m =< nlogn

Refined analysis of local convergence: implicit regularization 9-5



Generic optimization theory gives pessimistic bounds

WEF converges in O(n) iterations
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Generic optimization theory gives pessimistic bounds

WEF converges in O(n) iterations

il

Step size taken to be = O(1/n)

]

This choice is suggested by worst-case optimization theory

]

Does it capture what really happens?
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Numerical efficiency with n, = 0.1

10°
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Relative || - ||2 error
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Iteration count

Vanilla GD (WF) converges fast for a constant step size!
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Improved theory of WF

dist(z!, *) := min{ ||z’ + z*|]2}

Theorem 9.2 (Ma, Wang, Chi, Chen ’17)

Under i.i.d. Gaussian design, WF with spectral initialization achieves

t
dise(a',a") < (1-7) 7]

with high prob., provided that step size n < 1/logn and
sample size m 2 nlogn.

o lteration complexity: O(nlogl) \, O(lognlog?!)
e Sample complexity: O(nlogn)

e Derived based on finer analysis of GD trajectory
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A second look at gradient descent theory

Which local region enjoys both strong convexity and smoothness?

m
Y- [3al2)” ~ (ale)’] aral

1
my4

Refined analysis of local convergence: implicit regularization

9-9



A second look at gradient descent theory

Which local region enjoys both strong convexity and smoothness?

1 & T..%\2 T
EZ{ akx — (ap x*) }akak

e Not sufficiently smooth if  and ay, are too close (coherent)
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A second look at gradient descent theory

Which local region enjoys both strong convexity and smoothness?

ai

}a:(m —z%)| < Vlogn

e x is incoherent w.r.t. sampling vectors {ay} (incoherence region)
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A second look at gradient descent theory

Which local region enjoys both strong convexity and smoothness?

a2 al

3 (z—a%)| < V1 .
‘al (@-= )| ~ yIeen [a] (x — 2| < /logn

e x is incoherent w.r.t. sampling vectors {ay} (incoherence region)
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A second look at gradient descent theory

Which local region enjoys both strong convexity and smoothness?

a2 al

‘a;(:c — a:”)| < Vlegn

}a:(m—z:)}g logn
e x is incoherent w.r.t. sampling vectors {ay} (incoherence region)

Prior works suggest enforcing regularization (e.g. truncation,
projection, regularized loss) to promote incoherence
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Encouraging message: GD is implicitly regularized

region of local strong convexity 4+ smoothness
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Encouraging message: GD is implicitly regularized

region of local strong convexity 4+ smoothness

GD implicitly forces iterates to remain incoherent with {ay}
maxy |a] (zf — z*)| < Viogn||z*|2, Vt

— cannot be derived from generic optimization theory; relies on
finer statistical analysis for entire trajectory of GD

Refined analysis of local convergence: implicit regularization 9-10



Theoretical guarantees for local refinement stage

Theorem 9.3 (Ma, Wang, Chi, Chen '17) |
Under i.i.d. Gaussian design, WF with spectral initialization achieves
e maxy |a] z'| < logn ||z*||2 (incoherence)
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Theoretical guarantees for local refinement stage

Theorem 9.3 (Ma, Wang, Chi, Chen '17)

Under i.i.d. Gaussian design, WF with spectral initialization achieves
e maxy |a] z'| < logn ||z*||2 (incoherence)
o dist(z!,z*) < (1 — g)t ||lx*||2 (linear convergence)

provided that step size n < 1/logn and sample size m 2 nlogn.

e Attains € accuracy within O(logn log 1) iterations

Refined analysis of local convergence: implicit regularization 9-11



Key proof idea: leave-one-out analysis

For each 1 <[ < m, introduce leave-one-out iterates 2t
by dropping Ith measurement

8
*

AD AW p* g = 1A~
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Key proof idea: leave-one-out analysis
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incoherence region
w.r.t. a;

e Leave-one-out iterate () is independent of a;
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Key proof idea: leave-one-out analysis

a)
{at
[ DN
t AN
T
fa'} \
N
| &
incoherence region
w.r.t. a;

e Leave-one-out iterate () is independent of a;

e Leave-one-out iterate z0() ~ true iterate !

t

= ' is nearly independent of a;

nearly orthogonal to
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No need of sample splitting

e Several prior works use sample-splitting: require fresh samples at
each iteration; not practical but helps analysis

z! 23 5

N\
fresh samples
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No need of sample splitting

e Several prior works use sample-splitting: require fresh samples at
each iteration; not practical but helps analysis

z! 23 25
N\
fresh samples
0 z*
z 2
z

e In contrast, we reuse all samples in all iterations

2! 23 25

sama\gamples \/\/\/\

0 2!
z 2
z
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Architecture of the proof



Local geometry

Lemma 9.4

Suppose m > conlogn for some sufficiently large constant cy > 0.
With high probability,

Vif (@) = (1/2) - In
holds simultaneously for all x € R" satisfying ||z — x*||, < 2C4; and
V2f (x) < (5C5 (10 4 Cy) logn) - I,
holds simultaneously for all x € R™ obeying

|z — x*||, < 2Cy, (9.1a)
< Cy+/logn. (9.1b)

T ok
121%);1‘% (x — ™)
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Error contraction

Lemma 9.5

If 2 obeys the conditions (9.1), whp. one has

(9.2)

Hmt—f—l "

<@l -],

provided that the step size satisfies 0 < n < 1/[5C5 (10 + C3) logn].

— how to insure incoherence?

Refined analysis of local convergence: implicit regularization 9-17




Key proof idea: leave-one-out analysis

For each 1 <[ < m, introduce leave-one-out iterates 2t
by dropping Ith measurement

8
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AD AW p* g = 1A~
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Induction hypotheses

We aim at proving the following claims using induction

Hmt_m*

2§017

logn

t ()
pax laf — 20, < Cs

max ‘aT (mt — :B*)
1<j<m |7

n

< Cyy/logn.

Refined analysis of local convergence: implicit regularization
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Proximity between z' and z*{

Lemma 9.6

Suppose that the sample size obeys m > Cnlogn for some
sufficiently large constant C' > 0 and that the stepsize obeys
0 <n<1/[5C2(10 + C2)logn]. Then whp., one has

logn
max Hwt+1 o Clct+1,(l)H < Oy g .
1<Ii<m 2 n

Refined analysis of local convergence: implicit regularization
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Incoherence of leave-one-out iterates

By construction, t*1() is statistically independent of the sampling
vector a;. One thus has

(10 t+1,( .
11%1125(71‘@ x*)| < 5/logn|x — x|,
(i)
é 5y/log 1 (Hwt—‘rl,(l) — x|, + Hmt—i-l ot 2}

(ii) 1
< 5y/logn (Cg“ ogn +C’1)

< Cyy/logn (9.5)

holds for some constant Cy > 6C; > 0 and n sufficiently large. Here,
(i) comes from the triangle inequality, and (ii) arises from the
proximity bound (9.4) and the conclusion (9.2).
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Combining the bounds

max ‘al—r (xt+1 — :c*)

< max ‘alT(xt—i-l _xt—l—l,(l))‘

1<i<m 1<i<m
+ max ‘al—r(mHL(” — )
1<i<m
(i)
< max la|2|lz+? :1:"/“’(1)H2 + Cs/logn

(i)

/1
< Von - Cs og T + Cy/logn < Cov/logn
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Another example: Low-rank matrix completion



Low-rank matrix completion
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figure credit: Candés
e consider a low-rank matrix M* = U*X*U*"

e each entry MZ*] is observed independently with prob. p

e Goal: estimate M*
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A natural least-squares loss

Represent low-rank matrix by X X T with X € R™*"
—_———

low-rank factor

—how does local geometry look like?
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Incoherence region

Which region enjoys both restricted strong convexity and smoothness?
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Incoherence region

Which region enjoys both restricted strong convexity and smoothness?

€1

Xt

led (X = X%)[l2 < €| XF[|2,00
e X is not far away from X in Euclidean metric

e X is incoherent w.r.t. sampling basis (incoherence region)
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Incoherence region

Which region enjoys both restricted strong convexity and smoothness?

€2 (4]

Xt

les (X = X%)[l2 < €| XF[|2;o led (X — XH)l2 < el| X*{|2,00
e X is not far away from X in Euclidean metric

e X is incoherent w.r.t. sampling basis (incoherence region)
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Local geometry of f(-)

Lemma 9.7

Suppose that n?p > Ck?urnlogn for some sufficiently large constant
C > 0. Then with high probability, the Hessian V?f(X) obeys

vee (V) V2f (X) vee (V) > 222 |V}
)
Hv2f (X)H < iamax

forall X,V =Y Hy — X* s.t.
Hy = argmingcorxr |[Y R — X7*|

F

HX - X*”Q,oc <e HX*H27QQ7

where € < 1/1/r3purlog®n.
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Restricted local strong convexity

e Due to rotation ambiguity, f(-) cannot be strongly convex along
every direction; it is strongly convex along specific directions
V=YHy — X~

e Instead of /y ball, f(X) is strongly convex in a local {3  ball;
X needs to be incoherent in the sense that

1X|

_
200 S/ 1 X|
n
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Revisit Incoherence

Definition 9.8
Fix an orthonormal matrix U* € R™*". Define its incoherence to be
nl|U*|3
wU”) = —— ==

—recover incoherence of eigenvector when r = 1

e For M* = U*S*U*", define u(M™*) := u(U*)

Refined analysis of local convergence: implicit regularization 9-29



Existing solutions to guarantee incoherence

e regularized loss (solve minimizex f(X) + R(X) instead)

o e.g. Keshavan, Montanari, Oh '10, Sun, Luo '14, Ge, Lee, Ma 16,
Chen, Li'17
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Existing solutions to guarantee incoherence

e regularized loss (solve minimizex f(X) + R(X) instead)

o e.g. Keshavan, Montanari, Oh '10, Sun, Luo '14, Ge, Lee, Ma 16,
Chen, Li'17

e projection onto set of incoherent matrices
o e.g. Chen, Wainwright '15, Zheng, Lafferty '16

Refined analysis of local convergence: implicit regularization 9-30



Projected gradient descent for matrix completion

(1) Projected spectral initialization: let U’ZU°T be rank-r
eigendecomposition of

1
—Pa(Y).
;)
and set Z° = U (%)%, and incoherence set
2ur oo
¢ = (X | [ X e < 201 27))
let X0 = Pe(2°)

(2) Projected gradient descent updates:

X = Po(Xt - VF(XY), t=0,1,--

Refined analysis of local convergence: implicit regularization 9-31



Projection operator

Projection onto can be implemented via a row-wise “clipping
operation”

. i,'

. 2ur | Z2° }
Pe(X)]i,. =minq 1,4/ —
[Pe(X)] { 1%

Refined analysis of local convergence: implicit regularization

9-32



Performance guarantees

Theorem 9.9

Suppose that n?p > cop’r?k2nlogn for some large constant co > 0.
With high probability, one has for all t > 0

t
* C1 *
IX'Q — X*|2 < (1 — u%%?) o (M*),

. . . - 1
provided that step size is chosen as n = 0T (M)

Here Q! is the optimal alignment matrix between X* and X*

Q' := argmingcorr || X'R — X"l

Refined analysis of local convergence: implicit regularization 9-33



Regularity condition

Key to prove convergence is the following regularity condition

Lemma 9.10

Suppose that n?p > j>r’k?>nlogn. Then with high probability, for all
X €C, and | X — X*H||} < 0,(M*) f obeys

. 99
(VA(X), X — X"H) > o (M")||X — X"H|;

! IV 7(X)|2

* 13196 u%r2ko (M)

Here H is optimal alignment matrix

Refined analysis of local convergence: implicit regularization 9-34




Is regularization necessary for nonconvex matrix completion?



Numerical surprise with unregularized GD

n = 1000,r = 10,p = 0.1, = 0.2

10° T T T T

Relative error

T T
relative | - ||¢ error

relateive | - || error
relative || - [|2,00 error

10715 . . . .

50 100 150 200 250 300 350 400 450 500

Iteration count

Vanilla GD without regularization converges fast for MC!
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Our findings: GD is implicitly regularized

region of local strong convexity + smoothness
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Our findings: GD is implicitly regularized
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Our findings: GD is implicitly regularized

region of local strong convexity + smoothness

GD implicitly forces iterates to remain incoherent

— cannot be derived from generic optimization theory; relies on
finer statistical analysis for entire trajectory of GD
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Theoretical guarantees

Theorem 9.11 (Matrix completion)

Suppose M is rank-r, incoherent and well-conditioned. Vanilla
gradient descent (with spectral initialization) achieves € accuracy

e in O(logl) iterations

if step size n < 1/0max(M) and sample size > nr3log®n
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Theoretical guarantees

Theorem 9.11 (Matrix completion)

Suppose M is rank-r, incoherent and well-conditioned. Vanilla
gradient descent (with spectral initialization) achieves € accuracy

e in O(logl) iterations w.r.t. || - |

F cand |- l2,00
——

incoherence

if step size ) < 1/0max(M) and sample size > nr3log®n
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Theoretical guarantees

Theorem 9.11 (Matrix completion)

Suppose M is rank-r, incoherent and well-conditioned. Vanilla
gradient descent (with spectral initialization) achieves € accuracy

e in O(log1) iterations w.r.t. || - ||p, ,and || - |2.00
~——

incoherence

if step size ) < 1/0max(M) and sample size > nr3log®n

e Byproduct: vanilla GD controls entrywise error
— errors are spread out across all entries
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Key ingredient: leave-one-out analysis

For each 1 <[ < n, introduce leave-one-out iterates xt0
by replacing Ith row and column with true values

1 2 3 l n

=

— Xtv(l)

—~

MO

Refined analysis of local convergence: implicit regularization
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Key ingredient: leave-one-out analysis

€
{x1y
&<

N,
N

)
|

incoherence region

w.r.t. e

e Xt contains more information of Ith row of X1t indep. of
randomness in [th row
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Key ingredient: leave-one-out analysis

€]
{xu0

incoherence region

w.r.t. e

e Xt contains more information of Ith row of X1t indep. of
randomness in [th row

e Leave-one-out iterates X() ~ true iterates X!
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