STAT 37797: Mathematics of Data Science

Generic analysis of local convergence

ares:[ Vit
bl Catsci | exco. b
[ I] entia|latuy [ g

Cong Ma
University of Chicago, Autumn 2021



Outline

e Low-rank matrix sensing
e Phase retrieval

e Low-rank matrix completion
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Low-rank matrix sensing



Low-rank matrix sensing

e Groundtruth: rank-r matrix M* € RP*1*n2

e Observations:
yi = (A, M™), for1<i<m

e Goal: recover M* based on linear measurements {A;, i} 1<i<m
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How many measurements are needed

e m > ning “generic" measurements suffice given theory of
solving linear equations

e But M™ only has O((n1 + n2)r) degrees of freedom. Ideally, one
hope for using only O((n1 + n2)r) measurements

Recovery is possible if {A;}'s satisfy restricted isometry property J
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Restricted isometry property (RIP)

Define linear operator A : R"1*"2 . R™ t obe
AM) = [m™ (A, M)]1<i<m

Definition 8.1
The operator A is said to satisfy 7-RIP with RIP constant ¢, < 1 if

(1= o)l MIE < JAM)[3 < (1+6,)|| M

holds simultaneously for all M of rank at most r.

e Many random designs satisfy RIP with high probability

e For instance, when A; is composed of i.i.d. N'(0,1) entries, A
obeys 7-RIP with constant d, as soon as m > (n1 + ng)r /6>
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An optimization-based method

Consider the simple case when M* is psd and rank 1, i.e.,

M* — QS*ZIZ*T

Then least-squares estimation yields

minimize flx)=— Z (<Ai’wa> _ yi)2

xERn" 4m “
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Gradient descent

0

Starting from x", one proceeds by

wt+1 _ CCt _ an(a:t)

m
—xt— ((Ai, xle!’) — yz) Azt
mi

Here we made simplifying assumption that A; is symmetric

e Under random design, when m — oo, this mirrors PCA problem
with loss §|lzz" — z*x* T ||3; GD works locally

e How about finite-sample case?
— RIP helps
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Local convergence of gradient descent

Theorem 8.2

Suppose that A obeys 4-RIP with constant 64 < 1/44. If
|20 — x*||2 < ||*||2/12, then GD with n = 1/(3||z*||3) obeys

Jo' — 22 < ()2 — o, fort=0,1,2,...

e local linear convergence within basin of attraction
{ | [le -2l < |lz*]l2/12}

e how do we initialize GD? spectral method
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Proof of Theorem 8.2

In view of theory of gradient descent for locally strongly convex and
smooth functions, it suffices to prove that

0.25)|z* (|31, = V2f(z) < 3| =*|31,

holds for all
{z|llz— x|z < |lz*||l2/12}

To analyze spectral properties of V2 f(x), we focus on quadratic

forms
2"V2f(x)z
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Proof of Theorem 8.2 (cont.)

Simple calculations show

1 m
zTV2f(:c)z = — Z<Ai’ x| — :L'*:c*T>(zTAiz) + 2(zTAZ-:c)2,
m
i=1
which admits a more “compact” expression

2'Vif(x)z = (A(zz" —x*z*"), A(zz"))

+ %(A(z:v—r +xz"), A(zz" +xz"))
— requires analyzing (A(X), A(Y))
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RIP preserves inner product

A consequence of RIP

Lemma 8.3

Suppose that A satisfies 2r-RIP with constant 09, < 1, then
[(A(X), A(Y)) — (X, Y)| < 02 | X [l Y ||

holds for any X,Y of rank no more than r
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Proof of Theorem 8.2 (cont.)

Apply Lemma 8.3 to obtain

‘(A(ccccT —xrx* ), A(zz")) — (x| — x*z*T, zzT)‘

< dyflwx” —ara||pllzz " [lp < 3042”13 23,

while last relation uses || — x*||2 < ||z*||2.

Similarly, one has

’(A(za:T +xz'), Alzx" + z2z")) — ||zz" + a:zT||%‘

< Gallza’ +azE < dllw]|3] 25 < 1604|2323
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Proof of Theorem 8.2 (cont.)

Define

1
glx,z) = (xax’ —x*z* ", zz") + §||z:13T +xz |2

Key conclusion so far: when ||z — x*||2 < ||x*||2, 2" V2f(x)z is close
to g(x, 2)

It boils down to upper and lower bounding g(x, z)—a much easier
task

Generic analysis of local convergence 8-14



Proof of Lemma 8.3

Without loss of generality, assume that | X ||p = ||Y||lr =1
Since X +Y and X — Y have rank at most 2r, we can leverage
2r-RIP to obtain

(1) (2)
(1= 02)| X + Y[ < JAX + Y3 < (1+062)|X + Y[

®3) (4)
(1= 0)|X Y[ < JAX - Y3 < (1+062,)|X - Y[
Combine (2) and (3) to see
AAX), A(Y)) = [[AX +Y)|3 — [IAX = Y)|3
< (L+02) | X+ Y[ = (1-020)| X — Y7
= 469 + 4(X,Y)

Combine (1) and (4) to finish the proof
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Spectral initialization

Construct a surrogate matrix

1 m

M= =3 yiA;

mi=

Define adjoint operator of A: A*(:) : R™ — R™*"2
1 m
Af(v) = —= Y viA;
vim S

As a result, one has M = A*(A(M™))

e Let A\juju] be the top eigendecomposition of M return

mo = )\1’(1,1
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Performance guarantee of spectral initialization

Lemma 8.4

Suppose that A obeys 2-RIP with RIP constant §, < 1/4. Then one
has

lz° — @2 < 82lz*|2.

e as long as d4 is small enough, spectral initialization + GD works
for low-rank matrix sensing since dy < d,4

e under Gaussian design, we only need O((n; + na)r) linear
measurements
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Proof of Lemma 8.4

By definition, one has
M — M*|| = | A*(A(M™)) — M~
= sup v (A"(A(M*)) - M*)wv
v:||v||2=1

= sup (A*(A(M*)) - M* vv")

vilfo]2=1

< sup & M*||fllvo’ |IF

vi||vll2=1
< bal2|3
Consequently, by Wely's inequality and Davis-Kahan's theorem, we
have
A= AT < (|M = M| < 6|13

o *
|M - M| _

ur —uill2 < W S 02
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Proof of Lemma 8.4

Note that

[V = xgui

<[ (VA =)+ s -,
= (VA= N) + e - s = il

_ )‘1_)‘T * *
_\/)\71+\/ﬁ+”m 2+ lwr — uifl2

< 02l |2
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Sampling operators that do NOT satisfy RIP

Unfortunately, many sampling operators fail to satisfy RIP

Two important examples:

e Phase retrieval / solving random quadratic systems of equations

e Matrix completion
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Phase retrieval / solving random quadratic
systems of equations
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Solving linear systems (linear regression)

X B* Xp* y~Xp*
(NN "N 1 [ | [ |
sEfi_§ _. B
I.I- [ | = = =

n <
[ T N e | | -
H N | [ |
ECEEn o |
] [ | [ |
(I BE N L .
d

Estimate 8* € R? from n linear samples
T .
yi = x; B + &, i=1,...,n

— assume w.l.o.g. ||3*]|2 =1
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Solving quadratic systems of equations

X B* XpB* y~|XB
(AN "H 1 [ | |
sifl_§ -
l.l- [ | = = =

<

"THS H E N | |
H B [ | [ |
[ [ ] | | [ |
] [ | [ |
(LI TH B | |

IS

Estimate 8* € R? from n quadratic samples

yi:(mz—ﬂ*)z, i=1,...,n
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Motivation: phase retrieval

e electric field 3*(t1,t2) — Fourier transform F3*(f1, f2)

sample

. - 2 :
e detectors record intensities {F,B*(fl,fg)| of Fourier transform
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Motivation: phase retrieval

e electric field 3*(t1,t2) — Fourier transform F3*(f1, f2)

. - 2 :
e detectors record intensities {F,B*(fl,fgﬂ of Fourier transform

Phase retrieval: recover signal 8*(t1,t2) from |FB*(f1, f2)|2 J
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Motivation: learning neural nets with quadratic
activations

— Soltanolkotabi, Javanmard, Lee '17, Li, Ma, Zhang '17
ﬁ*
W
LN
\\V)
x ‘é—@* 0———++ ——>y
‘Z///’ \') © -7 output layer

‘/, hidden layer

input layer
input features: *  weights: 8* = [B7,- - , 3}]
o(z)=22

output:  y =3} 0@’ B +e = Ti(z'6)’
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Rank-one measurements in matrix space

Equivalent representation for measurements:

yi = a; *x* " a; = (a;a;] , M), 1<i<m
=M* — A
A £

Using operator notation

<A17X> <a’1a1 7X>
.A(X)Z <A2’X> _ <a2a27X>
(A X) | | {anal, X)
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Does A obey RIP?

Suppose a; " N(0,T,,)

e If x is independent of {a;}, then

2
(aial za") = |alz|" = |||} '), = ez |

1
7 A
e Consider A; = a;a; : with high prob.,

<aiavaAi> = [laillz = n]laia; |

—

(4 al A ~

e > jm|< —=lAde

— fails to obey RIP when m =~ n

1
4

Generic analysis of local convergence 8-26



Why do we lose RIP?

e Some low-rank matrices X (e.g. a;a; ) might be too aligned
with some (rank-1) measurement matrices

o loss of “incoherence” in some measurements
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A natural least-squares formulation

given: y = (apx*)? 1<k<m
J
N 1 & 2 2
minimizegern  f(x) = T > [(ak x)” — yk}
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Wirtinger flow (Candeés, Li, Soltanolkotabi’14)

m
2
minimize, = Z [ akas — yk}

1
dm =
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Wirtinger flow (Candeés, Li, Soltanolkotabi’14)

minimize, f(x) = i[ x) —yk}2

1
dm =

//’—_A—.‘\\ - .y . - - .
PPN e spectral initialization: ° « leading
! 4 RN . . .
AN NN eigenvector of certain data matrix
| / N
YA AN ™~ N
by V! IR
[ L ATTN Y, WU
,\ | | \ ‘\ 77 \\ \| /I'
AN
\ \\ \ \\\\\‘\ /// ; //
N \\\\\-\\:”/i///
o -~ =
~— ~—"7
e
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Wirtinger flow (Candeés, Li, Soltanolkotabi’14)

minimize, f(x) = i[ x) —yk}2

1
dm =

VAP e spectral initialization: 2° < leadin
/ é AN
[ RN eigenvector of certain data matrix
| / N
\‘ ‘\ ( I// \\\ \\\ \\\\
DY LA LYy e gradient descent:
SRRt
AN ! t+1 t t
NNy ' =z —nVfxh), t=0,1,...
N N S~
No —‘\\—/////
At
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Spectral initialization

—cf. homework 1

A0 u® «— leading eigenvalue, eigenvector of
1 & T
M = — Z Y apay

M2

Then set 2% = /Ao u°

Rationale: under random Gaussian design a; ind. N(0,1),

1 m
E[M]:=E lm Zykaka;] = |Ja*|3 1 + 22" 2"
k=1

leading eigenvector: +a*
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First theory of WF

dist(z!, £*) := min{||z’ + =*||2}
Theorem 8.5 (Candés, Li, Soltanolkotabi'14)

Under i.i.d. Gaussian design, WF with spectral initialization achieves

£/2
dist(@’ ) 5 (1) ot

with high prob., provided that step size n < 1/n and sample size:
m 2 nlogn.

e lteration complexity: O(nlog?)
e Sample complexity: O(nlogn)

e Derived based on (worst-case) local geometry
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Spectral initialization for phase retrieval

Key: control

1 m
Hm Zyk aka; — (||l |3, + 2x*x *T)

Lemma 8.6

Fix any small constant 6 > 0. As long as m > csnlogn for some
sufficiently large constant cs (which potentially depends on §), the
following holds with high probability

H Zykakak (l* |3 + 2" ) || < 83

e Proof: truncation-based matrix Bernstein or e-net argument
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Spectral initialization

Since

1 m
| > yragal — (|* |31, + 2z z* ")
mi=

is small, by Weyl's inequality and Davis-Kahan's theorem, we know
e A0 — \* is small

o ||u® — u*||z is small

Consequently, z° = V0uY is close to £* = vV A\*u* in the sense that

l? — 2|2 < |22
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Local geometry for phase retrieval

Now we move on to local convergence of GD, which boils down to
characterizing local geometry of f(-)

Lemma 8.7

Assume that m > conlogn. Then with high probability,
0.5I, = V*f(z) < conl,

holds simultaneously for all x obeying ||x — x*||2 < c1||x*||2. Here
co, c1,co > 0 are some universal constants.
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Proof of Lemma 8.7

First, write Hessian as

V(@) = L 3 (3(a]w)? - )asa]

=1

When x = x*, one has

1 m
Vi) = — Y 2(a] ") aia]
=1

~ 2( Haz*HzI + 2x*x* )

Therefore at minimizer «*, f(-) is strongly convex and smooth; how

about nearby points x
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Local strong convexity

Recall Hessian

1
Vf@) = - (3(a] ) ~ (a] 2*V)aia]
i=1
1 m
= — Z3(aiTaz)2aiaZT — (|| |31, + 2z*x *T)
m “
i=1
1 m
+ Haf:*||§In +2zxFx* T — - z:(aiT:E*)Q(zial-T
i=1

e Lemma 8.6 guarantees that if m > ¢onlogn, then whp.,

1 m
| |30, + 2x*x xT —Z(aTa: )a;a
mi3

T < 0.001)ja*)3
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Local strong convexity (cont.)

Now we turn to a uniform lower bound over x
1 m
— > (a] x)’a;a
m =1

Observe that for any constant C' > 0
m

1 T2 1 -
/ . <
g (a; ¢)*a;a - §: a; x)’1{|a; | < C}a;a;

miz

e [ntuition: truncation helps concentration due to better tail
behavior
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Local strong convexity (cont.)

Using covering argument, it is seen that with high probability

1
o > (ajx)*1{|al | < Claia —3(frzx’ + fo|lx|31.)| < |3,

H >
i=1

for all x, where

Br = E[¢*1{¢| < C}] - E[€*1{[¢| < C},
B2 = E[€°1{[¢| < C}]

Observe that 34 €29 and B 20
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Local smoothness

Decompose Hessian as

vmwzézmdwtmhﬁmd

=1
T 2 T
+Ez@w% — 2|2 BT + 207w T) =
+ (2 3T, + 20 T) = Ag

Our goal is to upper bound [|[A; + A + As|

Generic analysis of local convergence
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Local smoothness (cont.)

e Term ||As|| is easy to control
e By Lemma 8.6, term ||Az|| is also small

o We are left with first term, which can be controlled as

m
11 <3| > (@] @) ~ (o] 2*)]asa]
X zml
<3|—3"|(@/2)’ - (a] 2| aia]
=1
1 m
=3 EZ a; (x —x%)||a] (x +x*)| a;a,

Generic analysis of local convergence 8-40



Control A,

By Cauchy-Schwarz, we have

al-T(a: —x¥)

< aill2llz — z*||2 $ vnllz*|2,

where we have used the fact that ||a;||2 < /n with high probability,
and the assumption that ||z — x*||2 < ||z*|2

As a result, we obtain

=n

1AL < nlla*]3

m
1 T
L
=1
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A closer look at smoothness

e We obtain O(n) smoothness parameter for coherent points «
such that |a, x| < \/n

e Our prediction of local smoothness is tight; take

a;

a2

r=x"+0

consider =" V2 f(x)x
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Low-rank matrix completion



Low-rank matrix completion

| . EMEEEE -
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R R e g

(\.\3.\3\.\7\.\')
R T N

oo [T mﬂ ey 4
|
i

figure credit: Candés
e consider a low-rank matrix M* = U*X*U*"

e each entry MZ*] is observed independently with prob. p

e Goal: estimate M*
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A natural least-squares loss

Represent low-rank matrix by X X T with X € R™*"
—_———

low-rank factor

—how does local geometry look like?
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Local geometry of f(-)

Lemma 8.8

Suppose that n?p > Ck?urnlogn for some sufficiently large constant
C > 0. Then with high probability, the Hessian V?f(X) obeys

vee (V) V2f (X) vee (V) > 222 |V}
)
HV2f (X)H < iamax

forall X,V =Y Hy — X* s.t.
Hy = argmingcorxr |[Y R — X7*|

F

HX - X*”Q,oc <e HX*H27QQ7

where € < 1/1/r3purlog®n.
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Restricted local strong convexity

e Due to rotation ambiguity, f(-) cannot be strongly convex along
every direction; it is strongly convex along specific directions
V=YHy — X~

e Instead of /y ball, f(X) is strongly convex in a local {3  ball;
X needs to be incoherent in the sense that

1X|

_
200 S/ 1 X|
n
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Revisit Incoherence

Definition 8.9
Fix an orthonormal matrix U* € R™*". Define its incoherence to be
n U* 2
i = M s

—recover incoherence of eigenvector when r = 1

e For M* = U*S*U*", define u(M*) := u(U*)
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Projected gradient descent for matrix completion

(1) Projected spectral initialization: let U’ZU°T be rank-r
eigendecomposition of

1
—Pa(Y).
;)
and set Z° = U (%)%, and incoherence set
2ur oo
¢ = (X | [ X e < 201 27))
let X0 = Pe(2°)

(2) Projected gradient descent updates:

X = Po(Xt - VF(XY), t=0,1,--
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Projection operator

Projection onto can be implemented via a row-wise “clipping
operation”

(2%

[%(X)]Z-.:mm{l, 2ur 1|2°] }

X2
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Performance guarantees

Theorem 8.10

Suppose that n?p > cop’r?k2nlogn for some large constant co > 0.
With high probability, one has for all t > 0

t
C1 *
H“(tQtH% < (1 - Mg ) UT(M )7

722

. . . - 1
provided that step size is chosen as n = 0T (M)

Here Q! is the optimal alignment matrix between X* and X*

Q' := argmingcorr || X'R — X"l
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Regularity condition

Key to prove convergence is the following regularity condition

Lemma 8.11

Suppose that n?p > j>r’k?>nlogn. Then with high probability, for all
X €C, and | X — X*H|} < t0,(M*) f obeys

. 99
(VA(X),X = X"H) > o (M")||X — X"H]|;

! IV 7(X)|2

+ 13196 u%r2ko (M)

Here H is optimal alignment matrix
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Complete the proof
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