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Outline

• Low-rank matrix sensing
• Phase retrieval
• Low-rank matrix completion
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Low-rank matrix sensing



Low-rank matrix sensing

• Groundtruth: rank-r matrix M? ∈ Rn1×n2

• Observations:

yi = 〈Ai,M
?〉, for 1 ≤ i ≤ m

• Goal: recover M? based on linear measurements {Ai, yi}1≤i≤m
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How many measurements are needed

• m ≥ n1n2 “generic” measurements suffice given theory of
solving linear equations
• But M? only has O((n1 + n2)r) degrees of freedom. Ideally, one

hope for using only O((n1 + n2)r) measurements

Recovery is possible if {Ai}’s satisfy restricted isometry property
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Restricted isometry property (RIP)

Define linear operator A : Rn1×n2 7→ Rm t obe

A(M) = [m−1/2〈Ai,M〉]1≤i≤m

Definition 8.1
The operator A is said to satisfy r-RIP with RIP constant δr < 1 if

(1− δr)‖M‖2F ≤ ‖A(M)‖22 ≤ (1 + δr)‖M‖2F

holds simultaneously for all M of rank at most r.

• Many random designs satisfy RIP with high probability
• For instance, when Ai is composed of i.i.d. N (0, 1) entries, A

obeys r-RIP with constant δr as soon as m & (n1 + n2)r/δ2
r
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An optimization-based method

Consider the simple case when M? is psd and rank 1, i.e.,

M? = x?x?>

Then least-squares estimation yields

minimize
x∈Rn

f(x) = 1
4m

m∑
i=1

(
〈Ai,xx

>〉 − yi
)2
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Gradient descent

Starting from x0, one proceeds by

xt+1 = xt − η∇f(xt)

= xt − η

m

m∑
i=1

(
〈Ai,x

txt>〉 − yi
)
Aix

t

Here we made simplifying assumption that Ai is symmetric

• Under random design, when m→∞, this mirrors PCA problem
with loss 1

4‖xx
> − x?x?>‖2F; GD works locally

• How about finite-sample case?
— RIP helps
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Local convergence of gradient descent

Theorem 8.2

Suppose that A obeys 4-RIP with constant δ4 ≤ 1/44. If
‖x0 − x?‖2 ≤ ‖x?‖2/12, then GD with η = 1/(3‖x?‖22) obeys

‖xt − x?‖2 ≤ (11
12)t‖x0 − x?‖2, for t = 0, 1, 2, . . .

• local linear convergence within basin of attraction
{x | ‖x− x?‖2 ≤ ‖x?‖2/12}
• how do we initialize GD? spectral method
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Proof of Theorem 8.2

In view of theory of gradient descent for locally strongly convex and
smooth functions, it suffices to prove that

0.25‖x?‖22In � ∇2f(x) � 3‖x?‖22In

holds for all
{x | ‖x− x?‖2 ≤ ‖x?‖2/12}

To analyze spectral properties of ∇2f(x), we focus on quadratic
forms

z>∇2f(x)z
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Proof of Theorem 8.2 (cont.)

Simple calculations show

z>∇2f(x)z = 1
m

m∑
i=1
〈Ai,xx

> − x?x?>〉(z>Aiz) + 2(z>Aix)2,

which admits a more “compact” expression

z>∇2f(x)z = 〈A(xx> − x?x?>),A(zz>)〉

+ 1
2〈A(zx> + xz>),A(zx> + xz>)〉

— requires analyzing 〈A(X),A(Y )〉
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RIP preserves inner product

A consequence of RIP

Lemma 8.3

Suppose that A satisfies 2r-RIP with constant δ2r < 1, then

|〈A(X),A(Y )〉 − 〈X,Y 〉| ≤ δ2r‖X‖F‖Y ‖F

holds for any X,Y of rank no more than r
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Proof of Theorem 8.2 (cont.)

Apply Lemma 8.3 to obtain∣∣∣〈A(xx> − x?x?>),A(zz>)〉 − 〈xx> − x?x?>, zz>〉
∣∣∣

≤ δ4‖xx> − x?x?>‖F‖zz>‖F ≤ 3δ4‖x?‖22‖z‖22,

while last relation uses ‖x− x?‖2 ≤ ‖x?‖2.

Similarly, one has∣∣∣〈A(zx> + xz>),A(zx> + xz>)〉 − ‖zx> + xz>‖2F
∣∣∣

≤ δ4‖zx> + xz>‖2F ≤ 4δ4‖x‖22‖z‖22 ≤ 16δ4‖x?‖22‖z‖22
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Proof of Theorem 8.2 (cont.)

Define

g(x, z) := 〈xx> − x?x?>, zz>〉+ 1
2‖zx

> + xz>‖2F

Key conclusion so far: when ‖x−x?‖2 ≤ ‖x?‖2, z>∇2f(x)z is close
to g(x, z)

It boils down to upper and lower bounding g(x, z)—a much easier
task
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Proof of Lemma 8.3

Without loss of generality, assume that ‖X‖F = ‖Y ‖F = 1
Since X + Y and X − Y have rank at most 2r, we can leverage
2r-RIP to obtain

(1− δ2r)‖X + Y ‖2F
(1)
≤ ‖A(X + Y )‖22

(2)
≤ (1 + δ2r)‖X + Y ‖2F

(1− δ2r)‖X − Y ‖2F
(3)
≤ ‖A(X − Y )‖22

(4)
≤ (1 + δ2r)‖X − Y ‖2F

Combine (2) and (3) to see

4〈A(X),A(Y )〉 = ‖A(X + Y )‖22 − ‖A(X − Y )‖22
≤ (1 + δ2r)‖X + Y ‖2F − (1− δ2r)‖X − Y ‖2F
= 4δ2r + 4〈X,Y 〉

Combine (1) and (4) to finish the proof
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Spectral initialization

Construct a surrogate matrix

M = 1
m

m∑
i=1

yiAi

Define adjoint operator of A: A∗(·) : Rm → Rn1×n2

A∗(v) = 1√
m

m∑
i=1

viAi

As a result, one has M = A∗(A(M?))

• Let λ1u1u
>
1 be the top eigendecomposition of M ; return

x0 =
√
λ1u1
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Performance guarantee of spectral initialization

Lemma 8.4

Suppose that A obeys 2-RIP with RIP constant δ2 ≤ 1/4. Then one
has

‖x0 − x?‖2 . δ2‖x?‖2.

• as long as δ4 is small enough, spectral initialization + GD works
for low-rank matrix sensing since δ2 ≤ δ4

• under Gaussian design, we only need O((n1 + n2)r) linear
measurements
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Proof of Lemma 8.4
By definition, one has

‖M −M?‖ = ‖A∗(A(M?))−M?‖
= sup

v:‖v‖2=1
v> (A∗(A(M?))−M?)v

= sup
v:‖v‖2=1

〈A∗(A(M?))−M?,vv>〉

≤ sup
v:‖v‖2=1

δ2‖M?‖F‖vv>‖F

≤ δ2‖x?‖22
Consequently, by Wely’s inequality and Davis-Kahan’s theorem, we
have

λ1 − λ?1 ≤ ‖M −M?‖ ≤ δ2‖x?‖22

‖u1 − u?1‖2 .
‖M −M?‖
‖M?‖

. δ2
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Proof of Lemma 8.4

Note that∥∥∥√λ1u1 −
√
λ?1u

?
1

∥∥∥
2
≤
∥∥∥(√λ1 −

√
λ?1

)
u1
∥∥∥

2
+
∥∥∥√λ?1 (u1 − u?1)

∥∥∥
2

=
(√

λ1 −
√
λ?1

)
+ ‖x?‖2 · ‖u1 − u?1‖2

= λ1 − λ?1√
λ1 +

√
λ?1

+ ‖x?‖2 · ‖u1 − u?1‖2

. δ2‖x?‖2
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Sampling operators that do NOT satisfy RIP

Unfortunately, many sampling operators fail to satisfy RIP

Two important examples:

• Phase retrieval / solving random quadratic systems of equations

• Matrix completion
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Phase retrieval / solving random quadratic
systems of equations
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Solving linear systems (linear regression)
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Solving quadratic systems of equations
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Estimate β? ∈ Rd from n quadratic samples

yi =
(
x>i β

?)2, i = 1, . . . , n
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Motivation: phase retrieval

• electric field β?(t1, t2) −→ Fourier transform Fβ?(f1, f2)

• detectors record intensities
∣∣Fβ?(f1, f2)

∣∣2 of Fourier transform

Phase retrieval: recover signal β?(t1, t2) from |Fβ?(f1, f2)
∣∣2
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Motivation: learning neural nets with quadratic
activations

— Soltanolkotabi, Javanmard, Lee ’17, Li, Ma, Zhang ’17

hidden layer input layer output layer

1

hidden layer input layer output layer

1

hidden layer input layer output layer

1

hidden layer input layer output layer

x y W � � y

1

hidden layer input layer output layer

x y W � � y

1

hidden layer input layer output layer

x y W � � y

1

hidden layer input layer output layer

x y W � � y +

1

x

�?

y

1

x

�?

y

1

x

�?

y

1

input features: x weights: β? = [β?1, · · · ,β?r ]

output: y =
∑r
k=1 σ(x>β?k) + ε

σ(z)=z2
=⇒

∑r
k=1(x>β?k)2 + ε
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Rank-one measurements in matrix space

Equivalent representation for measurements:

yi = a>i x
?x?>︸ ︷︷ ︸

:=M?

ai =
〈
aia

>
i︸ ︷︷ ︸

:=Ai

,M?〉, 1 ≤ i ≤ m

Using operator notation

A (X) =


〈A1,X〉
〈A2,X〉

...
〈Am,X〉

 =


〈a1a

>
1 ,X〉

〈a2a
>
2 ,X〉
...

〈ama>m,X〉


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Does A obey RIP?

Suppose ai
ind.∼ N (0, In)

• If x is independent of {ai}, then

〈
aia

>
i ,xx

>〉 =
∣∣a>i x∣∣2 � ‖x‖22 ⇒ 1√

m

∥∥∥A(xx>)∥∥∥
F
� ‖xx>‖F

• Consider Ai = aia
>
i : with high prob.,〈

aia
>
i ,Ai

〉
= ‖ai‖42 ≈ n‖aia>i ‖F

=⇒ 1√
m
‖A(Ai)‖F ≥

1√
m
|
〈
aia

>
i ,Ai

〉
| ≈ n√

m
‖Ai‖F

— fails to obey RIP when m ≈ n

Generic analysis of local convergence 8-26



Why do we lose RIP?

• Some low-rank matrices X (e.g. aia>i ) might be too aligned
with some (rank-1) measurement matrices
◦ loss of “incoherence” in some measurements
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A natural least-squares formulation

given: yk = (a>k x?)2, 1 ≤ k ≤ m

⇓

minimizex∈Rn f(x) = 1
4m

m∑
k=1

[(
a>k x

)2 − yk]2
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Wirtinger flow (Candès, Li, Soltanolkotabi ’14)

minimizex f(x) = 1
4m

m∑
k=1

[(
a>k x

)2 − yk]2

• spectral initialization: x0 ← leading
eigenvector of certain data matrix

• gradient descent:

xt+1 = xt − η∇f(xt), t = 0, 1, . . .
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Spectral initialization

—cf. homework 1
λ0,u0 ←− leading eigenvalue, eigenvector of

M := 1
m

m∑
k=1

yk aka
>
k

Then set x0 =
√
λ0 u

0

Rationale: under random Gaussian design ai
ind.∼ N (0, I),

E[M ] := E
[

1
m

m∑
k=1

ykaka
>
k

]
= ‖x?‖22 I + 2x?x?>︸ ︷︷ ︸

leading eigenvector: ±x?
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First theory of WF

dist(xt,x?) := min{‖xt ± x?‖2}

Theorem 8.5 (Candès, Li, Soltanolkotabi ’14)
Under i.i.d. Gaussian design, WF with spectral initialization achieves

dist(xt,x?) .
(

1− η

4

)t/2
‖x?‖2,

with high prob., provided that step size η . 1/n and sample size:
m & n logn.

• Iteration complexity: O
(
n log 1

ε

)
• Sample complexity: O(n logn)

• Derived based on (worst-case) local geometry
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Spectral initialization for phase retrieval
Key: control ∥∥∥∥∥ 1

m

m∑
k=1

yk aka
>
k − (‖x?‖22In + 2x?x?>)

∥∥∥∥∥
Lemma 8.6

Fix any small constant δ > 0. As long as m ≥ cδn logn for some
sufficiently large constant cδ (which potentially depends on δ), the
following holds with high probability∥∥∥∥∥ 1

m

m∑
k=1

yk aka
>
k − (‖x?‖22In + 2x?x?>)

∥∥∥∥∥ ≤ δ‖x?‖22
• Proof: truncation-based matrix Bernstein or ε-net argument
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Spectral initialization

Since ∥∥∥∥∥ 1
m

m∑
k=1

yk aka
>
k − (‖x?‖22In + 2x?x?>)

∥∥∥∥∥
is small, by Weyl’s inequality and Davis-Kahan’s theorem, we know
• λ0 − λ? is small
• ‖u0 − u?‖2 is small

Consequently, x0 =
√
λ0u0 is close to x? =

√
λ?u? in the sense that

‖x0 − x?‖2 � ‖x?‖2
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Local geometry for phase retrieval

Now we move on to local convergence of GD, which boils down to
characterizing local geometry of f(·)

Lemma 8.7

Assume that m ≥ c0n logn. Then with high probability,

0.5In � ∇2f(x) � c2nIn

holds simultaneously for all x obeying ‖x− x?‖2 ≤ c1‖x?‖2. Here
c0, c1, c2 > 0 are some universal constants.
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Proof of Lemma 8.7

First, write Hessian as

∇2f(x) = 1
m

m∑
i=1

(3(a>i x)2 − yi)aia>i

When x = x?, one has

∇2f(x?) = 1
m

m∑
i=1

2(a>i x?)2aia
>
i

≈ 2(‖x?‖22In + 2x?x?>)

Therefore at minimizer x?, f(·) is strongly convex and smooth; how
about nearby points x
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Local strong convexity

Recall Hessian

∇2f(x) = 1
m

m∑
i=1

(3(a>i x)2 − (a>i x?)2)aia>i

= 1
m

m∑
i=1

3(a>i x)2aia
>
i − (‖x?‖22In + 2x?x?>)

+ ‖x?‖22In + 2x?x?> − 1
m

m∑
i=1

(a>i x?)2aia
>
i

• Lemma 8.6 guarantees that if m ≥ c0n logn, then whp.,∥∥∥∥∥‖x?‖22In + 2x?x?> − 1
m

m∑
i=1

(a>i x?)2aia
>
i

∥∥∥∥∥ ≤ 0.001‖x?‖22
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Local strong convexity (cont.)

Now we turn to a uniform lower bound over x

1
m

m∑
i=1

(a>i x)2aia
>
i

Observe that for any constant C > 0

1
m

m∑
i=1

(a>i x)2aia
>
i �

1
m

m∑
i=1

(a>i x)2
1{|a>i x| ≤ C}aia>i

• Intuition: truncation helps concentration due to better tail
behavior

Generic analysis of local convergence 8-37



Local strong convexity (cont.)

Using covering argument, it is seen that with high probability∥∥∥∥∥ 1
m

m∑
i=1

(a>i x)2
1{|a>i x| ≤ C}aia>i − 3(β1xx

> + β2‖x‖22In)
∥∥∥∥∥� ‖x‖22,

for all x, where

β1 := E[ξ4
1{|ξ| ≤ C}]− E[ξ2

1{|ξ| ≤ C}],
β2 := E[ξ2

1{|ξ| ≤ C}]

Observe that β1
C→∞→ 2, and β2

C→∞→ 1
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Local smoothness

Decompose Hessian as

∇2f(x) = 1
m

m∑
i=1

(3(a>i x)2 − (a>i x?)2)aia>i

= 3
m

m∑
i=1

[(a>i x)2 − (a>i x?)2]aia>i := Λ1

+ 2
m

m∑
i=1

(a>i x?)2aia
>
i − 2(‖x?‖22In + 2x?x?>) := Λ2

+ 2(‖x?‖22In + 2x?x?>) := Λ3

Our goal is to upper bound ‖Λ1 + Λ2 + Λ3‖
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Local smoothness (cont.)

• Term ‖Λ3‖ is easy to control
• By Lemma 8.6, term ‖Λ2‖ is also small
• We are left with first term, which can be controlled as

‖Λ1‖ ≤ 3
∥∥∥∥∥ 1
m

m∑
i=1

[(a>i x)2 − (a>i x?)2]aia>i

∥∥∥∥∥
≤ 3

∥∥∥∥∥ 1
m

m∑
i=1

∣∣∣(a>i x)2 − (a>i x?)2
∣∣∣aia>i

∥∥∥∥∥
= 3

∥∥∥∥∥ 1
m

m∑
i=1

∣∣∣a>i (x− x?)
∣∣∣ ∣∣∣a>i (x+ x?)

∣∣∣aia>i
∥∥∥∥∥
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Control Λ1

By Cauchy–Schwarz, we have∣∣∣a>i (x− x?)
∣∣∣ ≤ ‖ai‖2‖x− x?‖2 .

√
n‖x?‖2,

where we have used the fact that ‖ai‖2 .
√
n with high probability,

and the assumption that ‖x− x?‖2 . ‖x?‖2

As a result, we obtain

‖Λ1‖ . n‖x?‖22

∥∥∥∥∥ 1
m

m∑
i=1
aia

>
i

∥∥∥∥∥ � n
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A closer look at smoothness

• We obtain O(n) smoothness parameter for coherent points x
such that |a>i x| �

√
n

• Our prediction of local smoothness is tight; take

x = x? + δ
ai
‖ai‖2

consider x>∇2f(x)x
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Low-rank matrix completion



Low-rank matrix completion



X ? ? ? X ?
? ? X X ? ?
X ? ? X ? ?
? ? X ? ? X
X ? ? ? ? ?
? X ? ? X ?
? ? X X ? ?



? ? ? ?

?

?

??

??

???

?

?

figure credit: Candès
• consider a low-rank matrix M? = U?Σ?U?>

• each entry M?
i,j is observed independently with prob. p

• Goal: estimate M?
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A natural least-squares loss

Represent low-rank matrix by XX> with X ∈ Rn×r︸ ︷︷ ︸
low-rank factor

minimize
X∈Rn×r

f(X) =
∑

(i,j)∈Ω

[(
XX>

)
i,j
−M?

i,j

]2
—how does local geometry look like?
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Local geometry of f(·)

Lemma 8.8
Suppose that n2p ≥ Cκ2µrn logn for some sufficiently large constant
C > 0. Then with high probability, the Hessian ∇2f(X) obeys

vec (V )>∇2f (X) vec (V ) ≥ σmin
2 ‖V ‖2F∥∥∥∇2f (X)

∥∥∥ ≤ 5
2σmax

for all X, V = Y HY −X? s.t.
HY := arg minR∈Or×r ‖Y R−X?‖F,

‖X −X?‖2,∞ ≤ ε ‖X
?‖2,∞ ,

where ε� 1/
√
κ3µr log2 n.
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Restricted local strong convexity

• Due to rotation ambiguity, f(·) cannot be strongly convex along
every direction; it is strongly convex along specific directions
V = Y HY −X?

• Instead of `F ball, f(X) is strongly convex in a local `2,∞ ball;
X needs to be incoherent in the sense that

‖X‖2,∞ .
√
µr

n
‖X?‖
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Revisit Incoherence

Definition 8.9
Fix an orthonormal matrix U? ∈ Rn×r. Define its incoherence to be

µ(U?) :=
n‖U?‖22,∞

r

—recover incoherence of eigenvector when r = 1

• For M? = U?Σ?U?>, define µ(M?) := µ(U?)
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Projected gradient descent for matrix completion

(1) Projected spectral initialization: let U0Σ0U0> be rank-r
eigendecomposition of

1
p
PΩ(Y ).

and set Z0 = U0 (Σ0)1/2, and incoherence set

C := {X | ‖X‖2,∞ ≤
√

2µr
n
‖Z0‖}

let X0 = PC(Z0)

(2) Projected gradient descent updates:

Xt+1 = PC(Xt − ηt∇f
(
Xt)), t = 0, 1, · · ·
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Projection operator

Projection onto can be implemented via a row-wise “clipping
operation”

[PC(X)]i,· = min
{

1,
√

2µr
n

‖Z0‖
‖Xi,·‖2

}
·Xi,·
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Performance guarantees

Theorem 8.10
Suppose that n2p ≥ c0µ

2r2κ2n logn for some large constant c0 > 0.
With high probability, one has for all t ≥ 0

‖XtQt‖2F ≤
(

1− c1
µ2r2κ2

)t
σr(M?),

provided that step size is chosen as η � 1
µ2r2κσ1(M?)

Here Qt is the optimal alignment matrix between Xt and X?

Qt := argminR∈Or×r

∥∥XtR−X?
∥∥

F
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Regularity condition

Key to prove convergence is the following regularity condition

Lemma 8.11
Suppose that n2p ≥ µ2r2κ2n logn. Then with high probability, for all
X ∈ C, and ‖X −X?H‖2F ≤ 1

16σr(M
?) f obeys

〈∇f(X),X −X?H〉 ≥ 99
512σr(M

?)‖X −X?H‖2F

+ 1
13196µ2r2κσ1(M?)‖∇f(X)‖2F

Here H is optimal alignment matrix
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Complete the proof
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