STAT 37797: Mathematics of Data Science

Generic analysis of local convergence

Cong Ma
University of Chicago, Autumn 2021

Outline

- Low-rank matrix sensing
- Phase retrieval
- Low-rank matrix completion

Low-rank matrix sensing

Low-rank matrix sensing

- Groundtruth: rank- r matrix $\boldsymbol{M}^{\star} \in \mathbb{R}^{n_{1} \times n_{2}}$
- Observations:

$$
y_{i}=\left\langle\boldsymbol{A}_{i}, \boldsymbol{M}^{\star}\right\rangle, \quad \text { for } 1 \leq i \leq m
$$

- Goal: recover \boldsymbol{M}^{\star} based on linear measurements $\left\{\boldsymbol{A}_{i}, y_{i}\right\}_{1 \leq i \leq m}$

How many measurements are needed

- $m \geq n_{1} n_{2}$ "generic" measurements suffice given theory of solving linear equations
- But \boldsymbol{M}^{\star} only has $O\left(\left(n_{1}+n_{2}\right) r\right)$ degrees of freedom. Ideally, one hope for using only $O\left(\left(n_{1}+n_{2}\right) r\right)$ measurements

Recovery is possible if $\left\{A_{i}\right\}$'s satisfy restricted isometry property

Restricted isometry property (RIP)

Define linear operator $\mathcal{A}: \mathbb{R}^{n_{1} \times n_{2}} \mapsto \mathbb{R}^{m} \mathrm{t}$ obe

$$
\mathcal{A}(\boldsymbol{M})=\left[m^{-1 / 2}\left\langle\boldsymbol{A}_{i}, \boldsymbol{M}\right\rangle\right]_{1 \leq i \leq m}
$$

Definition 8.1

The operator \mathcal{A} is said to satisfy r-RIP with RIP constant $\delta_{r}<1$ if

$$
\left(1-\delta_{r}\right)\|\boldsymbol{M}\|_{\mathrm{F}}^{2} \leq\|\mathcal{A}(\boldsymbol{M})\|_{2}^{2} \leq\left(1+\delta_{r}\right)\|\boldsymbol{M}\|_{\mathrm{F}}^{2}
$$

holds simultaneously for all \boldsymbol{M} of rank at most r.

- Many random designs satisfy RIP with high probability
- For instance, when \boldsymbol{A}_{i} is composed of i.i.d. $\mathcal{N}(0,1)$ entries, \mathcal{A} obeys r-RIP with constant δ_{r} as soon as $m \gtrsim\left(n_{1}+n_{2}\right) r / \delta_{r}^{2}$

An optimization-based method

Consider the simple case when \boldsymbol{M}^{\star} is psd and rank 1, i.e.,

$$
\boldsymbol{M}^{\star}=\boldsymbol{x}^{\star} \boldsymbol{x}^{\star \top}
$$

Then least-squares estimation yields

$$
\underset{\boldsymbol{x} \in \mathbb{R}^{n}}{\operatorname{minimize}} \quad f(\boldsymbol{x})=\frac{1}{4 m} \sum_{i=1}^{m}\left(\left\langle\boldsymbol{A}_{i}, \boldsymbol{x} \boldsymbol{x}^{\top}\right\rangle-y_{i}\right)^{2}
$$

Gradient descent

Starting from \boldsymbol{x}^{0}, one proceeds by

$$
\begin{aligned}
\boldsymbol{x}^{t+1} & =\boldsymbol{x}^{t}-\eta \nabla f\left(\boldsymbol{x}^{t}\right) \\
& =\boldsymbol{x}^{t}-\frac{\eta}{m} \sum_{i=1}^{m}\left(\left\langle\boldsymbol{A}_{i}, \boldsymbol{x}^{t} \boldsymbol{x}^{t \top}\right\rangle-y_{i}\right) \boldsymbol{A}_{i} \boldsymbol{x}^{t}
\end{aligned}
$$

Here we made simplifying assumption that A_{i} is symmetric

- Under random design, when $m \rightarrow \infty$, this mirrors PCA problem with loss $\frac{1}{4}\left\|\boldsymbol{x} \boldsymbol{x}^{\top}-\boldsymbol{x}^{\star} \boldsymbol{x}^{\star \top}\right\|_{\mathrm{F}}^{2}$; GD works locally
- How about finite-sample case?

Local convergence of gradient descent

Theorem 8.2

Suppose that \mathcal{A} obeys 4-RIP with constant $\delta_{4} \leq 1 / 44$. If

$$
\begin{array}{r}
\left\|\boldsymbol{x}^{0}-\boldsymbol{x}^{\star}\right\|_{2} \leq\left\|\boldsymbol{x}^{\star}\right\|_{2} / 12 \text {, then } G D \text { with } \eta=1 /\left(3\left\|\boldsymbol{x}^{\star}\right\|_{2}^{2}\right) \text { obeys } \\
\left\|\boldsymbol{x}^{t}-\boldsymbol{x}^{\star}\right\|_{2} \leq\left(\frac{11}{12}\right)^{t}\left\|\boldsymbol{x}^{0}-\boldsymbol{x}^{\star}\right\|_{2}, \quad \text { for } t=0,1,2, \ldots
\end{array}
$$

- local linear convergence within basin of attraction $\left\{\boldsymbol{x} \mid\left\|\boldsymbol{x}-\boldsymbol{x}^{\star}\right\|_{2} \leq\left\|\boldsymbol{x}^{\star}\right\|_{2} / 12\right\}$
- how do we initialize GD? spectral method

Proof of Theorem 8.2

In view of theory of gradient descent for locally strongly convex and smooth functions, it suffices to prove that

$$
0.25\left\|\boldsymbol{x}^{\star}\right\|_{2}^{2} \boldsymbol{I}_{n} \preceq \nabla^{2} f(\boldsymbol{x}) \preceq 3\left\|\boldsymbol{x}^{\star}\right\|_{2}^{2} \boldsymbol{I}_{n}
$$

holds for all

$$
\left\{\boldsymbol{x} \mid\left\|\boldsymbol{x}-\boldsymbol{x}^{\star}\right\|_{2} \leq\left\|\boldsymbol{x}^{\star}\right\|_{2} / 12\right\}
$$

To analyze spectral properties of $\nabla^{2} f(\boldsymbol{x})$, we focus on quadratic forms

$$
\boldsymbol{z}^{\top} \nabla^{2} f(\boldsymbol{x}) \boldsymbol{z}
$$

Proof of Theorem 8.2 (cont.)

Simple calculations show

$$
\boldsymbol{z}^{\top} \nabla^{2} f(\boldsymbol{x}) \boldsymbol{z}=\frac{1}{m} \sum_{i=1}^{m}\left\langle\boldsymbol{A}_{i}, \boldsymbol{x} \boldsymbol{x}^{\top}-\boldsymbol{x}^{\star} \boldsymbol{x}^{\star}\right\rangle\left(\boldsymbol{z}^{\top} \boldsymbol{A}_{i} \boldsymbol{z}\right)+2\left(\boldsymbol{z}^{\top} \boldsymbol{A}_{i} \boldsymbol{x}\right)^{2},
$$

which admits a more "compact" expression

$$
\begin{aligned}
\boldsymbol{z}^{\top} \nabla^{2} f(\boldsymbol{x}) \boldsymbol{z}= & \left\langle\mathcal{A}\left(\boldsymbol{x} \boldsymbol{x}^{\top}-\boldsymbol{x}^{\star} \boldsymbol{x}^{\star \top}\right), \mathcal{A}\left(\boldsymbol{z} \boldsymbol{z}^{\top}\right)\right\rangle \\
& +\frac{1}{2}\left\langle\mathcal{A}\left(\boldsymbol{z} \boldsymbol{x}^{\top}+\boldsymbol{x} \boldsymbol{z}^{\top}\right), \mathcal{A}\left(\boldsymbol{z} \boldsymbol{x}^{\top}+\boldsymbol{x} \boldsymbol{z}^{\top}\right)\right\rangle
\end{aligned}
$$

RIP preserves inner product

A consequence of RIP

Lemma 8.3

Suppose that \mathcal{A} satisfies $2 r$-RIP with constant $\delta_{2 r}<1$, then

$$
|\langle\mathcal{A}(\boldsymbol{X}), \mathcal{A}(\boldsymbol{Y})\rangle-\langle\boldsymbol{X}, \boldsymbol{Y}\rangle| \leq \delta_{2 r}\|\boldsymbol{X}\|_{F}\|\boldsymbol{Y}\|_{F}
$$

holds for any $\boldsymbol{X}, \boldsymbol{Y}$ of rank no more than r

Proof of Theorem 8.2 (cont.)

Apply Lemma 8.3 to obtain

$$
\begin{gathered}
\left|\left\langle\mathcal{A}\left(\boldsymbol{x} \boldsymbol{x}^{\top}-\boldsymbol{x}^{\star} \boldsymbol{x}^{\star \top}\right), \mathcal{A}\left(\boldsymbol{z} \boldsymbol{z}^{\top}\right)\right\rangle-\left\langle\boldsymbol{x} \boldsymbol{x}^{\top}-\boldsymbol{x}^{\star} \boldsymbol{x}^{\star \top}, \boldsymbol{z} \boldsymbol{z}^{\top}\right\rangle\right| \\
\leq \delta_{4}\left\|\boldsymbol{x} \boldsymbol{x}^{\top}-\boldsymbol{x}^{\star} \boldsymbol{x}^{\star \top}\right\|_{\mathrm{F}}\left\|\boldsymbol{z} \boldsymbol{z}^{\top}\right\|_{\mathrm{F}} \leq 3 \delta_{4}\left\|\boldsymbol{x}^{\star}\right\|_{2}^{2}\|\boldsymbol{z}\|_{2}^{2},
\end{gathered}
$$

while last relation uses $\left\|\boldsymbol{x}-\boldsymbol{x}^{\star}\right\|_{2} \leq\left\|\boldsymbol{x}^{\star}\right\|_{2}$.

Similarly, one has

$$
\begin{aligned}
& \left|\left\langle\mathcal{A}\left(\boldsymbol{z} \boldsymbol{x}^{\top}+\boldsymbol{x} \boldsymbol{z}^{\top}\right), \mathcal{A}\left(\boldsymbol{z} \boldsymbol{x}^{\top}+\boldsymbol{x} \boldsymbol{z}^{\top}\right)\right\rangle-\left\|\boldsymbol{z} \boldsymbol{x}^{\top}+\boldsymbol{x} \boldsymbol{z}^{\top}\right\|_{\mathrm{F}}^{2}\right| \\
& \quad \leq \delta_{4}\left\|\boldsymbol{z} \boldsymbol{x}^{\top}+\boldsymbol{x} \boldsymbol{z}^{\top}\right\|_{\mathrm{F}}^{2} \leq 4 \delta_{4}\|\boldsymbol{x}\|_{2}^{2}\|\boldsymbol{z}\|_{2}^{2} \leq 16 \delta_{4}\left\|\boldsymbol{x}^{\star}\right\|_{2}^{2}\|\boldsymbol{z}\|_{2}^{2}
\end{aligned}
$$

Proof of Theorem 8.2 (cont.)

Define

$$
g(\boldsymbol{x}, \boldsymbol{z}):=\left\langle\boldsymbol{x} \boldsymbol{x}^{\top}-\boldsymbol{x}^{\star} \boldsymbol{x}^{\star \top}, \boldsymbol{z} \boldsymbol{z}^{\top}\right\rangle+\frac{1}{2}\left\|\boldsymbol{z} \boldsymbol{x}^{\top}+\boldsymbol{x} \boldsymbol{z}^{\top}\right\|_{\mathrm{F}}^{2}
$$

Key conclusion so far: when $\left\|\boldsymbol{x}-\boldsymbol{x}^{\star}\right\|_{2} \leq\left\|\boldsymbol{x}^{\star}\right\|_{2}, \boldsymbol{z}^{\top} \nabla^{2} f(\boldsymbol{x}) \boldsymbol{z}$ is close to $g(\boldsymbol{x}, \boldsymbol{z})$

It boils down to upper and lower bounding $g(\boldsymbol{x}, \boldsymbol{z})$-a much easier task

Proof of Lemma 8.3

Without loss of generality, assume that $\|\boldsymbol{X}\|_{\mathrm{F}}=\|\boldsymbol{Y}\|_{\mathrm{F}}=1$
Since $\boldsymbol{X}+\boldsymbol{Y}$ and $\boldsymbol{X}-\boldsymbol{Y}$ have rank at most $2 r$, we can leverage $2 r$-RIP to obtain

$$
\begin{aligned}
& \left(1-\delta_{2 r}\right)\|\boldsymbol{X}+\boldsymbol{Y}\|_{\mathrm{F}}^{2} \stackrel{(1)}{\leq}\|\mathcal{A}(\boldsymbol{X}+\boldsymbol{Y})\|_{2}^{2} \stackrel{(2)}{\leq}\left(1+\delta_{2 r}\right)\|\boldsymbol{X}+\boldsymbol{Y}\|_{\mathrm{F}}^{2} \\
& \left(1-\delta_{2 r}\right)\|\boldsymbol{X}-\boldsymbol{Y}\|_{\mathrm{F}}^{2} \stackrel{(3)}{\leq}\|\mathcal{A}(\boldsymbol{X}-\boldsymbol{Y})\|_{2}^{2} \stackrel{(4)}{\leq}\left(1+\delta_{2 r}\right)\|\boldsymbol{X}-\boldsymbol{Y}\|_{\mathrm{F}}^{2}
\end{aligned}
$$

Combine (2) and (3) to see

$$
\begin{aligned}
4\langle\mathcal{A}(\boldsymbol{X}), \mathcal{A}(\boldsymbol{Y})\rangle & =\|\mathcal{A}(\boldsymbol{X}+\boldsymbol{Y})\|_{2}^{2}-\|\mathcal{A}(\boldsymbol{X}-\boldsymbol{Y})\|_{2}^{2} \\
& \leq\left(1+\delta_{2 r}\right)\|\boldsymbol{X}+\boldsymbol{Y}\|_{\mathrm{F}}^{2}-\left(1-\delta_{2 r}\right)\|\boldsymbol{X}-\boldsymbol{Y}\|_{\mathrm{F}}^{2} \\
& =4 \delta_{2 r}+4\langle\boldsymbol{X}, \boldsymbol{Y}\rangle
\end{aligned}
$$

Combine (1) and (4) to finish the proof

Spectral initialization

Construct a surrogate matrix

$$
\boldsymbol{M}=\frac{1}{m} \sum_{i=1}^{m} y_{i} \boldsymbol{A}_{i}
$$

Define adjoint operator of $\mathcal{A}: \mathcal{A}^{*}(\cdot): \mathbb{R}^{m} \rightarrow \mathbb{R}^{n_{1} \times n_{2}}$

$$
\mathcal{A}^{*}(\boldsymbol{v})=\frac{1}{\sqrt{m}} \sum_{i=1}^{m} v_{i} \boldsymbol{A}_{i}
$$

As a result, one has $M=\mathcal{A}^{*}\left(\mathcal{A}\left(M^{\star}\right)\right)$

- Let $\lambda_{1} \boldsymbol{u}_{1} \boldsymbol{u}_{1}^{\top}$ be the top eigendecomposition of \boldsymbol{M}; return $\boldsymbol{x}^{0}=\sqrt{\lambda_{1}} \boldsymbol{u}_{1}$

Performance guarantee of spectral initialization

Lemma 8.4

Suppose that \mathcal{A} obeys 2-RIP with RIP constant $\delta_{2} \leq 1 / 4$. Then one has

$$
\left\|\boldsymbol{x}^{0}-\boldsymbol{x}^{\star}\right\|_{2} \lesssim \delta_{2}\left\|\boldsymbol{x}^{\star}\right\|_{2}
$$

- as long as δ_{4} is small enough, spectral initialization + GD works for low-rank matrix sensing since $\delta_{2} \leq \delta_{4}$
- under Gaussian design, we only need $O\left(\left(n_{1}+n_{2}\right) r\right)$ linear measurements

Proof of Lemma 8.4

By definition, one has

$$
\begin{aligned}
\left\|\boldsymbol{M}-\boldsymbol{M}^{\star}\right\| & =\left\|\mathcal{A}^{*}\left(\mathcal{A}\left(\boldsymbol{M}^{\star}\right)\right)-\boldsymbol{M}^{\star}\right\| \\
& =\sup _{\boldsymbol{v}:\|\boldsymbol{v}\|_{2}=1} \boldsymbol{v}^{\top}\left(\mathcal{A}^{*}\left(\mathcal{A}\left(\boldsymbol{M}^{\star}\right)\right)-\boldsymbol{M}^{\star}\right) \boldsymbol{v} \\
& =\sup _{\boldsymbol{v}:\|\boldsymbol{v}\|_{2}=1}\left\langle\mathcal{A}^{*}\left(\mathcal{A}\left(\boldsymbol{M}^{\star}\right)\right)-\boldsymbol{M}^{\star}, \boldsymbol{v} \boldsymbol{v}^{\top}\right\rangle \\
& \leq \sup _{\boldsymbol{v}:\|\boldsymbol{v}\|_{2}=1} \delta_{2}\left\|\boldsymbol{M}^{\star}\right\|_{\mathrm{F}}\left\|\boldsymbol{v} \boldsymbol{v}^{\top}\right\|_{\mathrm{F}} \\
& \leq \delta_{2}\left\|\boldsymbol{x}^{\star}\right\|_{2}^{2}
\end{aligned}
$$

Consequently, by Wely's inequality and Davis-Kahan's theorem, we have

$$
\begin{aligned}
\lambda_{1}-\lambda_{1}^{\star} & \leq\left\|\boldsymbol{M}-\boldsymbol{M}^{\star}\right\| \leq \delta_{2}\left\|\boldsymbol{x}^{\star}\right\|_{2}^{2} \\
\left\|\boldsymbol{u}_{1}-\boldsymbol{u}_{1}^{\star}\right\|_{2} & \lesssim \frac{\left\|\boldsymbol{M}-\boldsymbol{M}^{\star}\right\|}{\left\|\boldsymbol{M}^{\star}\right\|} \lesssim \delta_{2}
\end{aligned}
$$

Proof of Lemma 8.4

Note that

$$
\begin{aligned}
\left\|\sqrt{\lambda_{1}} \boldsymbol{u}_{1}-\sqrt{\lambda_{1}^{\star}} \boldsymbol{u}_{1}^{\star}\right\|_{2} & \leq\left\|\left(\sqrt{\lambda_{1}}-\sqrt{\lambda_{1}^{\star}}\right) \boldsymbol{u}_{1}\right\|_{2}+\left\|\sqrt{\lambda_{1}^{\star}}\left(\boldsymbol{u}_{1}-\boldsymbol{u}_{1}^{\star}\right)\right\|_{2} \\
& =\left(\sqrt{\lambda_{1}}-\sqrt{\lambda_{1}^{\star}}\right)+\left\|\boldsymbol{x}^{\star}\right\|_{2} \cdot\left\|\boldsymbol{u}_{1}-\boldsymbol{u}_{1}^{\star}\right\|_{2} \\
& =\frac{\lambda_{1}-\lambda_{1}^{\star}}{\sqrt{\lambda_{1}}+\sqrt{\lambda_{1}^{\star}}}+\left\|\boldsymbol{x}^{\star}\right\|_{2} \cdot\left\|\boldsymbol{u}_{1}-\boldsymbol{u}_{1}^{\star}\right\|_{2} \\
& \lesssim \delta_{2}\left\|\boldsymbol{x}^{\star}\right\|_{2}
\end{aligned}
$$

Sampling operators that do NOT satisfy RIP

Unfortunately, many sampling operators fail to satisfy RIP

Two important examples:

- Phase retrieval / solving random quadratic systems of equations
- Matrix completion

Phase retrieval / solving random quadratic systems of equations

Solving linear systems (linear regression)

Estimate $\boldsymbol{\beta}^{\star} \in \mathbb{R}^{d}$ from n linear samples

$$
y_{i}=\boldsymbol{x}_{i}^{\top} \boldsymbol{\beta}^{\star}+\varepsilon_{i}, \quad i=1, \ldots, n
$$

Solving quadratic systems of equations

Estimate $\boldsymbol{\beta}^{\star} \in \mathbb{R}^{d}$ from n quadratic samples

$$
y_{i}=\left(\boldsymbol{x}_{i}^{\top} \boldsymbol{\beta}^{\star}\right)^{2}, \quad i=1, \ldots, n
$$

Motivation: phase retrieval

- electric field $\boldsymbol{\beta}^{\star}\left(t_{1}, t_{2}\right) \longrightarrow$ Fourier transform $\mathcal{F} \boldsymbol{\beta}^{\star}\left(f_{1}, f_{2}\right)$

- detectors record intensities $\left|\mathcal{F} \boldsymbol{\beta}^{\star}\left(f_{1}, f_{2}\right)\right|^{2}$ of Fourier transform

Motivation: phase retrieval

- electric field $\boldsymbol{\beta}^{\star}\left(t_{1}, t_{2}\right) \longrightarrow$ Fourier transform $\mathcal{F} \boldsymbol{\beta}^{\star}\left(f_{1}, f_{2}\right)$

- detectors record intensities $\left|\mathcal{F} \boldsymbol{\beta}^{\star}\left(f_{1}, f_{2}\right)\right|^{2}$ of Fourier transform

Phase retrieval: recover signal $\boldsymbol{\beta}^{\star}\left(t_{1}, t_{2}\right)$ from $\left|\mathcal{F} \boldsymbol{\beta}^{\star}\left(f_{1}, f_{2}\right)\right|^{2}$

Motivation: learning neural nets with quadratic activations

- Soltanolkotabi, Javanmard, Lee '17, Li, Ma, Zhang '17

input features: \boldsymbol{x} weights: $\boldsymbol{\beta}^{\star}=\left[\boldsymbol{\beta}_{1}^{\star}, \cdots, \boldsymbol{\beta}_{r}^{\star}\right]$
output: $\quad y=\sum_{k=1}^{r} \sigma\left(\boldsymbol{x}^{\top} \boldsymbol{\beta}_{k}^{\star}\right)+\varepsilon \stackrel{\sigma(z)=z^{2}}{\Longrightarrow} \quad \sum_{k=1}^{r}\left(\boldsymbol{x}^{\top} \boldsymbol{\beta}_{k}^{\star}\right)^{2}+\varepsilon$

Rank-one measurements in matrix space

Equivalent representation for measurements:

$$
y_{i}=\boldsymbol{a}_{i}^{\top} \underbrace{\boldsymbol{x}^{\star} \boldsymbol{x}^{\star \top}}_{:=\boldsymbol{M}^{\star}} \boldsymbol{a}_{i}=\langle\underbrace{\boldsymbol{a}_{i} \boldsymbol{a}_{i}^{\top}}_{:=\boldsymbol{A}_{i}}, \boldsymbol{M}^{\star}\rangle, \quad 1 \leq i \leq m
$$

Using operator notation

$$
\mathcal{A}(\boldsymbol{X})=\left[\begin{array}{c}
\left\langle\boldsymbol{A}_{1}, \boldsymbol{X}\right\rangle \\
\left\langle\boldsymbol{A}_{2}, \boldsymbol{X}\right\rangle \\
\vdots \\
\left\langle\boldsymbol{A}_{m}, \boldsymbol{X}\right\rangle
\end{array}\right]=\left[\begin{array}{c}
\left\langle\boldsymbol{a}_{1} \boldsymbol{a}_{1}^{\top}, \boldsymbol{X}\right\rangle \\
\left\langle\boldsymbol{a}_{2} \boldsymbol{a}_{2}^{\top}, \boldsymbol{X}\right\rangle \\
\vdots \\
\left\langle\boldsymbol{a}_{m} \boldsymbol{a}_{m}^{\top}, \boldsymbol{X}\right\rangle
\end{array}\right]
$$

Does \mathcal{A} obey RIP?

Suppose $\boldsymbol{a}_{i} \stackrel{\text { ind. }}{\sim} \mathcal{N}\left(\mathbf{0}, \boldsymbol{I}_{n}\right)$

- If \boldsymbol{x} is independent of $\left\{\boldsymbol{a}_{i}\right\}$, then

$$
\left\langle\boldsymbol{a}_{i} \boldsymbol{a}_{i}^{\top}, \boldsymbol{x} \boldsymbol{x}^{\top}\right\rangle=\left|\boldsymbol{a}_{i}^{\top} \boldsymbol{x}\right|^{2} \asymp\|\boldsymbol{x}\|_{2}^{2} \Rightarrow \frac{1}{\sqrt{m}}\left\|\mathcal{A}\left(\boldsymbol{x} \boldsymbol{x}^{\top}\right)\right\|_{\mathrm{F}} \asymp\left\|\boldsymbol{x} \boldsymbol{x}^{\top}\right\|_{\mathrm{F}}
$$

- Consider $\boldsymbol{A}_{i}=\boldsymbol{a}_{i} \boldsymbol{a}_{i}^{\top}$: with high prob.,

$$
\begin{aligned}
\left\langle\boldsymbol{a}_{i} \boldsymbol{a}_{i}^{\top}, \boldsymbol{A}_{i}\right\rangle & =\left\|\boldsymbol{a}_{i}\right\|_{2}^{4} \approx n\left\|\boldsymbol{a}_{i} \boldsymbol{a}_{i}^{\top}\right\|_{\mathrm{F}} \\
\Longrightarrow \quad \frac{1}{\sqrt{m}}\left\|\mathcal{A}\left(\boldsymbol{A}_{i}\right)\right\|_{\mathrm{F}} \geq & \frac{1}{\sqrt{m}}\left|\left\langle\boldsymbol{a}_{i} \boldsymbol{a}_{i}^{\top}, \boldsymbol{A}_{i}\right\rangle\right| \approx \frac{n}{\sqrt{m}}\left\|\boldsymbol{A}_{i}\right\|_{\mathrm{F}} \\
& \quad \text { fails to obey RIP when } m \approx n
\end{aligned}
$$

Why do we lose RIP?

- Some low-rank matrices \boldsymbol{X} (e.g. $\boldsymbol{a}_{i} \boldsymbol{a}_{i}^{\top}$) might be too aligned with some (rank-1) measurement matrices
- loss of "incoherence" in some measurements

A natural least-squares formulation

$$
\begin{aligned}
& \text { given: } \quad y_{k}=\left(\boldsymbol{a}_{k}^{\top} \boldsymbol{x}^{\star}\right)^{2}, \quad 1 \leq k \leq m \\
& \Downarrow \\
& \operatorname{minimize}_{\boldsymbol{x} \in \mathbb{R}^{n}} \quad f(\boldsymbol{x})=\frac{1}{4 m} \sum_{k=1}^{m}\left[\left(\boldsymbol{a}_{k}^{\top} \boldsymbol{x}\right)^{2}-y_{k}\right]^{2}
\end{aligned}
$$

Wirtinger flow (Candès, Li, Soltanolkotabi '14)

$$
\operatorname{minimize}_{\boldsymbol{x}} \quad f(\boldsymbol{x})=\frac{1}{4 m} \sum_{k=1}^{m}\left[\left(\boldsymbol{a}_{k}^{\top} \boldsymbol{x}\right)^{2}-y_{k}\right]^{2}
$$

Wirtinger flow (Candès, Li, Soltanolkotabi '14)

$$
\operatorname{minimize}_{\boldsymbol{x}} \quad f(\boldsymbol{x})=\frac{1}{4 m} \sum_{k=1}^{m}\left[\left(\boldsymbol{a}_{k}^{\top} \boldsymbol{x}\right)^{2}-y_{k}\right]^{2}
$$

- spectral initialization: $\boldsymbol{x}^{0} \leftarrow$ leading eigenvector of certain data matrix

Wirtinger flow (Candès, Li, Soltanolkotabi '14)

$$
\operatorname{minimize}_{\boldsymbol{x}} \quad f(\boldsymbol{x})=\frac{1}{4 m} \sum_{k=1}^{m}\left[\left(\boldsymbol{a}_{k}^{\top} \boldsymbol{x}\right)^{2}-y_{k}\right]^{2}
$$

- spectral initialization: $\boldsymbol{x}^{0} \leftarrow$ leading eigenvector of certain data matrix
- gradient descent:

$$
\boldsymbol{x}^{t+1}=\boldsymbol{x}^{t}-\eta \nabla f\left(\boldsymbol{x}^{t}\right), \quad t=0,1, \ldots
$$

Spectral initialization

—cf. homework 1
$\lambda^{0}, \boldsymbol{u}^{0} \longleftarrow$ leading eigenvalue, eigenvector of

$$
\boldsymbol{M}:=\frac{1}{m} \sum_{k=1}^{m} y_{k} \boldsymbol{a}_{k} \boldsymbol{a}_{k}^{\top}
$$

Then set $\boldsymbol{x}^{0}=\sqrt{\lambda_{0}} \boldsymbol{u}^{0}$
Rationale: under random Gaussian design $\boldsymbol{a}_{i} \stackrel{\text { ind. }}{\sim} \mathcal{N}(\mathbf{0}, \boldsymbol{I})$,

$$
\mathbb{E}[\boldsymbol{M}]:=\mathbb{E}\left[\frac{1}{m} \sum_{k=1}^{m} \boldsymbol{y}_{k} \boldsymbol{a}_{k} \boldsymbol{a}_{k}^{\top}\right]=\underbrace{\left\|\boldsymbol{x}^{\star}\right\|_{2}^{2} \boldsymbol{I}+2 \boldsymbol{x}^{\star} \boldsymbol{x}^{\star}}_{\text {leading eigenvector: } \pm \boldsymbol{x}^{\star}}
$$

First theory of WF

$$
\operatorname{dist}\left(\boldsymbol{x}^{t}, \boldsymbol{x}^{\star}\right):=\min \left\{\left\|\boldsymbol{x}^{t} \pm \boldsymbol{x}^{\star}\right\|_{2}\right\}
$$

Theorem 8.5 (Candès, Li, Soltanolkotabi '14)

Under i.i.d. Gaussian design, WF with spectral initialization achieves

$$
\operatorname{dist}\left(\boldsymbol{x}^{t}, \boldsymbol{x}^{\star}\right) \lesssim\left(1-\frac{\eta}{4}\right)^{t / 2}\left\|\boldsymbol{x}^{\star}\right\|_{2}
$$

with high prob., provided that step size $\eta \lesssim 1 / n$ and sample size: $m \gtrsim n \log n$.

- Iteration complexity: $O\left(n \log \frac{1}{\epsilon}\right)$
- Sample complexity: $O(n \log n)$
- Derived based on (worst-case) local geometry

First theory of WF

$$
\operatorname{dist}\left(\boldsymbol{x}^{t}, \boldsymbol{x}^{\star}\right):=\min \left\{\left\|\boldsymbol{x}^{t} \pm \boldsymbol{x}^{\star}\right\|_{2}\right\}
$$

Theorem 8.5 (Candès, Li, Soltanolkotabi '14)

Under i.i.d. Gaussian design, WF with spectral initialization achieves

$$
\operatorname{dist}\left(\boldsymbol{x}^{t}, \boldsymbol{x}^{\star}\right) \lesssim\left(1-\frac{\eta}{4}\right)^{t / 2}\left\|\boldsymbol{x}^{\star}\right\|_{2}
$$

with high prob., provided that step size $\eta \lesssim 1 / n$ and sample size: $m \gtrsim n \log n$.

- Iteration complexity: $O\left(n \log \frac{1}{\epsilon}\right)$
- Sample complexity: $O(n \log n)$
- Derived based on (worst-case) local geometry

First theory of WF

$$
\operatorname{dist}\left(\boldsymbol{x}^{t}, \boldsymbol{x}^{\star}\right):=\min \left\{\left\|\boldsymbol{x}^{t} \pm \boldsymbol{x}^{\star}\right\|_{2}\right\}
$$

Theorem 8.5 (Candès, Li, Soltanolkotabi '14)

Under i.i.d. Gaussian design, WF with spectral initialization achieves

$$
\operatorname{dist}\left(\boldsymbol{x}^{t}, \boldsymbol{x}^{\star}\right) \lesssim\left(1-\frac{\eta}{4}\right)^{t / 2}\left\|\boldsymbol{x}^{\star}\right\|_{2}
$$

with high prob., provided that step size $\eta \lesssim 1 / n$ and sample size: $m \gtrsim n \log n$.

- Iteration complexity: $O\left(n \log \frac{1}{\epsilon}\right)$
- Sample complexity: $O(n \log n)$
- Derived based on (worst-case) local geometry

Spectral initialization for phase retrieval

Key: control

$$
\left\|\frac{1}{m} \sum_{k=1}^{m} y_{k} \boldsymbol{a}_{k} \boldsymbol{a}_{k}^{\top}-\left(\left\|\boldsymbol{x}^{\star}\right\|_{2}^{2} \boldsymbol{I}_{n}+2 \boldsymbol{x}^{\star} \boldsymbol{x}^{\star \top}\right)\right\|
$$

Lemma 8.6

Fix any small constant $\delta>0$. As long as $m \geq c_{\delta} n \log n$ for some sufficiently large constant c_{δ} (which potentially depends on δ), the following holds with high probability

$$
\left\|\frac{1}{m} \sum_{k=1}^{m} y_{k} \boldsymbol{a}_{k} \boldsymbol{a}_{k}^{\top}-\left(\left\|\boldsymbol{x}^{\star}\right\|_{2}^{2} \boldsymbol{I}_{n}+2 \boldsymbol{x}^{\star} \boldsymbol{x}^{\star \top}\right)\right\| \leq \delta\left\|\boldsymbol{x}^{\star}\right\|_{2}^{2}
$$

- Proof: truncation-based matrix Bernstein or ε-net argument

Spectral initialization

Since

$$
\left\|\frac{1}{m} \sum_{k=1}^{m} y_{k} \boldsymbol{a}_{k} \boldsymbol{a}_{k}^{\top}-\left(\left\|\boldsymbol{x}^{\star}\right\|_{2}^{2} \boldsymbol{I}_{n}+2 \boldsymbol{x}^{\star} \boldsymbol{x}^{\star \top}\right)\right\|
$$

is small, by Weyl's inequality and Davis-Kahan's theorem, we know

- $\lambda^{0}-\lambda^{\star}$ is small
- $\left\|\boldsymbol{u}^{0}-\boldsymbol{u}^{\star}\right\|_{2}$ is small

Consequently, $\boldsymbol{x}^{0}=\sqrt{\lambda^{0}} \boldsymbol{u}^{0}$ is close to $\boldsymbol{x}^{\star}=\sqrt{\lambda^{\star}} \boldsymbol{u}^{\star}$ in the sense that

$$
\left\|\boldsymbol{x}^{0}-\boldsymbol{x}^{\star}\right\|_{2} \ll\left\|\boldsymbol{x}^{\star}\right\|_{2}
$$

Local geometry for phase retrieval

Now we move on to local convergence of GD, which boils down to characterizing local geometry of $f(\cdot)$

Lemma 8.7

Assume that $m \geq c_{0} n \log n$. Then with high probability,

$$
0.5 \boldsymbol{I}_{n} \preceq \nabla^{2} f(\boldsymbol{x}) \preceq c_{2} n \boldsymbol{I}_{n}
$$

holds simultaneously for all \boldsymbol{x} obeying $\left\|\boldsymbol{x}-\boldsymbol{x}^{\star}\right\|_{2} \leq c_{1}\left\|\boldsymbol{x}^{\star}\right\|_{2}$. Here $c_{0}, c_{1}, c_{2}>0$ are some universal constants.

Proof of Lemma 8.7

First, write Hessian as

$$
\nabla^{2} f(\boldsymbol{x})=\frac{1}{m} \sum_{i=1}^{m}\left(3\left(\boldsymbol{a}_{i}^{\top} \boldsymbol{x}\right)^{2}-y_{i}\right) \boldsymbol{a}_{i} \boldsymbol{a}_{i}^{\top}
$$

When $\boldsymbol{x}=\boldsymbol{x}^{\star}$, one has

$$
\begin{aligned}
\nabla^{2} f\left(\boldsymbol{x}^{\star}\right) & =\frac{1}{m} \sum_{i=1}^{m} 2\left(\boldsymbol{a}_{i}^{\top} \boldsymbol{x}^{\star}\right)^{2} \boldsymbol{a}_{i} \boldsymbol{a}_{i}^{\top} \\
& \approx 2\left(\left\|\boldsymbol{x}^{\star}\right\|_{2}^{2} \boldsymbol{I}_{n}+2 \boldsymbol{x}^{\star} \boldsymbol{x}^{\star \top}\right)
\end{aligned}
$$

Therefore at minimizer $\boldsymbol{x}^{\star}, f(\cdot)$ is strongly convex and smooth; how about nearby points \boldsymbol{x}

Local strong convexity

Recall Hessian

$$
\begin{aligned}
\nabla^{2} f(\boldsymbol{x})= & \frac{1}{m} \sum_{i=1}^{m}\left(3\left(\boldsymbol{a}_{i}^{\top} \boldsymbol{x}\right)^{2}-\left(\boldsymbol{a}_{i}^{\top} \boldsymbol{x}^{\star}\right)^{2}\right) \boldsymbol{a}_{i} \boldsymbol{a}_{i}^{\top} \\
= & \frac{1}{m} \sum_{i=1}^{m} 3\left(\boldsymbol{a}_{i}^{\top} \boldsymbol{x}\right)^{2} \boldsymbol{a}_{i} \boldsymbol{a}_{i}^{\top}-\left(\left\|\boldsymbol{x}^{\star}\right\|_{2}^{2} \boldsymbol{I}_{n}+2 \boldsymbol{x}^{\star} \boldsymbol{x}^{\star \top}\right) \\
& +\left\|\boldsymbol{x}^{\star}\right\|_{2}^{2} \boldsymbol{I}_{n}+2 \boldsymbol{x}^{\star} \boldsymbol{x}^{\star \top}-\frac{1}{m} \sum_{i=1}^{m}\left(\boldsymbol{a}_{i}^{\top} \boldsymbol{x}^{\star}\right)^{2} \boldsymbol{a}_{i} \boldsymbol{a}_{i}^{\top}
\end{aligned}
$$

- Lemma 8.6 guarantees that if $m \geq c_{0} n \log n$, then whp.,

$$
\left\|\left\|\boldsymbol{x}^{\star}\right\|_{2}^{2} \boldsymbol{I}_{n}+2 \boldsymbol{x}^{\star} \boldsymbol{x}^{\star \top}-\frac{1}{m} \sum_{i=1}^{m}\left(\boldsymbol{a}_{i}^{\top} \boldsymbol{x}^{\star}\right)^{2} \boldsymbol{a}_{i} \boldsymbol{a}_{i}^{\top}\right\| \leq 0.001\left\|\boldsymbol{x}^{\star}\right\|_{2}^{2}
$$

Local strong convexity (cont.)

Now we turn to a uniform lower bound over \boldsymbol{x}

$$
\frac{1}{m} \sum_{i=1}^{m}\left(\boldsymbol{a}_{i}^{\top} \boldsymbol{x}\right)^{2} \boldsymbol{a}_{i} \boldsymbol{a}_{i}^{\top}
$$

Observe that for any constant $C>0$

$$
\frac{1}{m} \sum_{i=1}^{m}\left(\boldsymbol{a}_{i}^{\top} \boldsymbol{x}\right)^{2} \boldsymbol{a}_{i} \boldsymbol{a}_{i}^{\top} \succeq \frac{1}{m} \sum_{i=1}^{m}\left(\boldsymbol{a}_{i}^{\top} \boldsymbol{x}\right)^{2} \mathbb{1}\left\{\left|\boldsymbol{a}_{i}^{\top} \boldsymbol{x}\right| \leq C\right\} \boldsymbol{a}_{i} \boldsymbol{a}_{i}^{\top}
$$

- Intuition: truncation helps concentration due to better tail behavior

Local strong convexity (cont.)

Using covering argument, it is seen that with high probability
$\left\|\frac{1}{m} \sum_{i=1}^{m}\left(\boldsymbol{a}_{i}^{\top} \boldsymbol{x}\right)^{2} \mathbb{1}\left\{\left|\boldsymbol{a}_{i}^{\top} \boldsymbol{x}\right| \leq C\right\} \boldsymbol{a}_{i} \boldsymbol{a}_{i}^{\top}-3\left(\beta_{1} \boldsymbol{x} \boldsymbol{x}^{\top}+\beta_{2}\|\boldsymbol{x}\|_{2}^{2} \boldsymbol{I}_{n}\right)\right\| \ll\|\boldsymbol{x}\|_{2}^{2}$,
for all \boldsymbol{x}, where

$$
\begin{aligned}
& \beta_{1}:=\mathbb{E}\left[\xi^{4} \mathbb{1}\{|\xi| \leq C\}\right]-\mathbb{E}\left[\xi^{2} \mathbb{1}\{|\xi| \leq C\}\right], \\
& \beta_{2}:=\mathbb{E}\left[\xi^{2} \mathbb{1}\{|\xi| \leq C\}\right]
\end{aligned}
$$

Observe that $\beta_{1} \xrightarrow{C \rightarrow \infty} 2$, and $\beta_{2} \xrightarrow{C \rightarrow \infty} 1$

Local smoothness

Decompose Hessian as

$$
\begin{aligned}
\nabla^{2} f(\boldsymbol{x})= & \frac{1}{m} \sum_{i=1}^{m}\left(3\left(\boldsymbol{a}_{i}^{\top} \boldsymbol{x}\right)^{2}-\left(\boldsymbol{a}_{i}^{\top} \boldsymbol{x}^{\star}\right)^{2}\right) \boldsymbol{a}_{i} \boldsymbol{a}_{i}^{\top} \\
= & \frac{3}{m} \sum_{i=1}^{m}\left[\left(\boldsymbol{a}_{i}^{\top} \boldsymbol{x}\right)^{2}-\left(\boldsymbol{a}_{i}^{\top} \boldsymbol{x}^{\star}\right)^{2}\right] \boldsymbol{a}_{i} \boldsymbol{a}_{i}^{\top}:=\boldsymbol{\Lambda}_{1} \\
& +\frac{2}{m} \sum_{i=1}^{m}\left(\boldsymbol{a}_{i}^{\top} \boldsymbol{x}^{\star}\right)^{2} \boldsymbol{a}_{i} \boldsymbol{a}_{i}^{\top}-2\left(\left\|\boldsymbol{x}^{\star}\right\|_{2}^{2} \boldsymbol{I}_{n}+2 \boldsymbol{x}^{\star} \boldsymbol{x}^{\star \top}\right):=\boldsymbol{\Lambda}_{2} \\
& +2\left(\left\|\boldsymbol{x}^{\star}\right\|_{2}^{2} \boldsymbol{I}_{n}+2 \boldsymbol{x}^{\star} \boldsymbol{x}^{\star \top}\right):=\boldsymbol{\Lambda}_{3}
\end{aligned}
$$

Our goal is to upper bound $\left\|\boldsymbol{\Lambda}_{1}+\boldsymbol{\Lambda}_{2}+\boldsymbol{\Lambda}_{3}\right\|$

Local smoothness (cont.)

- Term $\left\|\boldsymbol{\Lambda}_{3}\right\|$ is easy to control
- By Lemma 8.6, term $\left\|\boldsymbol{\Lambda}_{2}\right\|$ is also small
- We are left with first term, which can be controlled as

$$
\begin{aligned}
\left\|\Lambda_{1}\right\| & \leq 3\left\|\frac{1}{m} \sum_{i=1}^{m}\left[\left(\boldsymbol{a}_{i}^{\top} \boldsymbol{x}\right)^{2}-\left(\boldsymbol{a}_{i}^{\top} \boldsymbol{x}^{\star}\right)^{2}\right] \boldsymbol{a}_{i} \boldsymbol{a}_{i}^{\top}\right\| \\
& \leq 3\left\|\frac{1}{m} \sum_{i=1}^{m}\left|\left(\boldsymbol{a}_{i}^{\top} \boldsymbol{x}\right)^{2}-\left(\boldsymbol{a}_{i}^{\top} \boldsymbol{x}^{\star}\right)^{2}\right| \boldsymbol{a}_{i} \boldsymbol{a}_{i}^{\top}\right\| \\
& =3\left\|\frac{1}{m} \sum_{i=1}^{m}\left|\boldsymbol{a}_{i}^{\top}\left(\boldsymbol{x}-\boldsymbol{x}^{\star}\right)\right|\left|\boldsymbol{a}_{i}^{\top}\left(\boldsymbol{x}+\boldsymbol{x}^{\star}\right)\right| \boldsymbol{a}_{i} \boldsymbol{a}_{i}^{\top}\right\|
\end{aligned}
$$

Control Λ_{1}

By Cauchy-Schwarz, we have

$$
\left|\boldsymbol{a}_{i}^{\top}\left(\boldsymbol{x}-\boldsymbol{x}^{\star}\right)\right| \leq\left\|\boldsymbol{a}_{i}\right\|_{2}\left\|\boldsymbol{x}-\boldsymbol{x}^{\star}\right\|_{2} \lesssim \sqrt{n}\left\|\boldsymbol{x}^{\star}\right\|_{2}
$$

where we have used the fact that $\left\|\boldsymbol{a}_{i}\right\|_{2} \lesssim \sqrt{n}$ with high probability, and the assumption that $\left\|\boldsymbol{x}-\boldsymbol{x}^{\star}\right\|_{2} \lesssim\left\|\boldsymbol{x}^{\star}\right\|_{2}$

As a result, we obtain

$$
\left\|\Lambda_{1}\right\| \lesssim n\left\|\boldsymbol{x}^{\star}\right\|_{2}^{2}\left\|\frac{1}{m} \sum_{i=1}^{m} \boldsymbol{a}_{i} \boldsymbol{a}_{i}^{\top}\right\| \asymp n
$$

A closer look at smoothness

- We obtain $O(n)$ smoothness parameter for coherent points \boldsymbol{x} such that $\left|\boldsymbol{a}_{i}^{\top} \boldsymbol{x}\right| \asymp \sqrt{n}$
- Our prediction of local smoothness is tight; take

$$
\boldsymbol{x}=\boldsymbol{x}^{\star}+\delta \frac{\boldsymbol{a}_{i}}{\left\|\boldsymbol{a}_{i}\right\|_{2}}
$$

consider $\boldsymbol{x}^{\top} \nabla^{2} f(\boldsymbol{x}) \boldsymbol{x}$

Low-rank matrix completion

Low-rank matrix completion

figure credit: Candès

- consider a low-rank matrix $\boldsymbol{M}^{\star}=\boldsymbol{U}^{\star} \boldsymbol{\Sigma}^{\star} \boldsymbol{U}^{\star} \top$
- each entry $M_{i, j}^{\star}$ is observed independently with prob. p
- Goal: estimate M^{\star}

A natural least-squares loss

Represent low-rank matrix by $\boldsymbol{X} \boldsymbol{X}^{\top}$ with $\underbrace{\boldsymbol{X} \in \mathbb{R}^{n \times r}}_{\text {low-rank factor }}$

$$
\underset{\boldsymbol{X} \in \mathbb{R}^{n} \times r}{\operatorname{minimize}} f(\boldsymbol{X})=\sum_{(i, j) \in \Omega}\left[\left(\boldsymbol{X} \boldsymbol{X}^{\top}\right)_{i, j}-M_{i, j}^{\star}\right]^{2}
$$

Local geometry of $f(\cdot)$

Lemma 8.8

Suppose that $n^{2} p \geq C \kappa^{2} \mu r n \log n$ for some sufficiently large constant $C>0$. Then with high probability, the Hessian $\nabla^{2} f(\boldsymbol{X})$ obeys

$$
\begin{aligned}
\operatorname{vec}(\boldsymbol{V})^{\top} \nabla^{2} f(\boldsymbol{X}) \operatorname{vec}(\boldsymbol{V}) & \geq \frac{\sigma_{\min }^{2}}{2}\|\boldsymbol{V}\|_{\mathrm{F}}^{2} \\
\left\|\nabla^{2} f(\boldsymbol{X})\right\| & \leq \frac{5}{2} \sigma_{\max }
\end{aligned}
$$

for all $\boldsymbol{X}, \boldsymbol{V}=\boldsymbol{Y} \boldsymbol{H}_{Y}-\boldsymbol{X}^{\star}$ s.t. $\boldsymbol{H}_{Y}:=\arg \min _{\boldsymbol{R} \in \mathcal{O}^{r \times r}}\left\|\boldsymbol{Y} \boldsymbol{R}-\boldsymbol{X}^{\star}\right\|_{\mathrm{F}}$,

$$
\left\|\boldsymbol{X}-\boldsymbol{X}^{\star}\right\|_{2, \infty} \leq \epsilon\left\|\boldsymbol{X}^{\star}\right\|_{2, \infty}
$$

where $\epsilon \ll 1 / \sqrt{\kappa^{3} \mu r \log ^{2} n}$.

Restricted local strong convexity

- Due to rotation ambiguity, $f(\cdot)$ cannot be strongly convex along every direction; it is strongly convex along specific directions $\boldsymbol{V}=\boldsymbol{Y} \boldsymbol{H}_{Y}-\boldsymbol{X}^{\star}$
- Instead of ℓ_{F} ball, $f(X)$ is strongly convex in a local $\ell_{2, \infty}$ ball; \boldsymbol{X} needs to be incoherent in the sense that

$$
\|\boldsymbol{X}\|_{2, \infty} \lesssim \sqrt{\frac{\mu r}{n}}\left\|\boldsymbol{X}^{\star}\right\|
$$

Revisit Incoherence

Definition 8.9

Fix an orthonormal matrix $\boldsymbol{U}^{\star} \in \mathbb{R}^{n \times r}$. Define its incoherence to be

$$
\mu\left(\boldsymbol{U}^{\star}\right):=\frac{n\left\|\boldsymbol{U}^{\star}\right\|_{2, \infty}^{2}}{r}
$$

—recover incoherence of eigenvector when $r=1$

- For $\boldsymbol{M}^{\star}=\boldsymbol{U}^{\star} \boldsymbol{\Sigma}^{\star} \boldsymbol{U}^{\star}{ }^{\top}$, define $\mu\left(\boldsymbol{M}^{\star}\right):=\mu\left(\boldsymbol{U}^{\star}\right)$

Projected gradient descent for matrix completion

(1) Projected spectral initialization: let $\boldsymbol{U}^{0} \boldsymbol{\Sigma}^{0} \boldsymbol{U}^{0 \top}$ be rank- r eigendecomposition of

$$
\frac{1}{p} \mathcal{P}_{\Omega}(\boldsymbol{Y}) .
$$

and set $\boldsymbol{Z}^{0}=\boldsymbol{U}^{0}\left(\boldsymbol{\Sigma}^{0}\right)^{1 / 2}$, and incoherence set

$$
\mathcal{C}:=\left\{\boldsymbol{X} \left\lvert\,\|\boldsymbol{X}\|_{2, \infty} \leq \sqrt{\frac{2 \mu r}{n}}\left\|\boldsymbol{Z}^{0}\right\|\right.\right\}
$$

let $\boldsymbol{X}^{0}=\mathcal{P}_{\mathcal{C}}\left(\boldsymbol{Z}^{0}\right)$
(2) Projected gradient descent updates:

$$
\boldsymbol{X}^{t+1}=\mathcal{P}_{\mathcal{C}}\left(\boldsymbol{X}^{t}-\eta_{t} \nabla f\left(\boldsymbol{X}^{t}\right)\right), \quad t=0,1, \cdots
$$

Projection operator

Projection onto can be implemented via a row-wise "clipping operation"

$$
\left[\mathcal{P}_{\mathcal{C}}(\boldsymbol{X})\right]_{i, \cdot}=\min \left\{1, \sqrt{\frac{2 \mu r}{n}} \frac{\left\|\boldsymbol{Z}^{0}\right\|}{\left\|\boldsymbol{X}_{i,},\right\|_{2}}\right\} \cdot \boldsymbol{X}_{i, \cdot}
$$

Performance guarantees

Theorem 8.10

Suppose that $n^{2} p \geq c_{0} \mu^{2} r^{2} \kappa^{2} n \log n$ for some large constant $c_{0}>0$. With high probability, one has for all $t \geq 0$

$$
\left\|\boldsymbol{X}^{t} \boldsymbol{Q}^{t}\right\|_{\mathrm{F}}^{2} \leq\left(1-\frac{c_{1}}{\mu^{2} r^{2} \kappa^{2}}\right)^{t} \sigma_{r}\left(\boldsymbol{M}^{\star}\right)
$$

provided that step size is chosen as $\eta \asymp \frac{1}{\mu^{2} r^{2} \kappa \sigma_{1}\left(\boldsymbol{M}^{\star}\right)}$
Here \boldsymbol{Q}^{t} is the optimal alignment matrix between \boldsymbol{X}^{t} and \boldsymbol{X}^{\star}

$$
\boldsymbol{Q}^{t}:=\operatorname{argmin}_{\boldsymbol{R} \in \mathcal{O}^{r \times r}}\left\|\boldsymbol{X}^{t} \boldsymbol{R}-\boldsymbol{X}^{\star}\right\|_{\mathrm{F}}
$$

Regularity condition

Key to prove convergence is the following regularity condition

Lemma 8.11

Suppose that $n^{2} p \geq \mu^{2} r^{2} \kappa^{2} n \log n$. Then with high probability, for all $\boldsymbol{X} \in \mathcal{C}$, and $\left\|\boldsymbol{X}-\boldsymbol{X}^{\star} \boldsymbol{H}\right\|_{\mathrm{F}}^{2} \leq \frac{1}{16} \sigma_{r}\left(\boldsymbol{M}^{\star}\right) f$ obeys

$$
\begin{aligned}
\left\langle\nabla f(\boldsymbol{X}), \boldsymbol{X}-\boldsymbol{X}^{\star} \boldsymbol{H}\right\rangle \geq & \frac{99}{512} \sigma_{r}\left(\boldsymbol{M}^{\star}\right)\left\|\boldsymbol{X}-\boldsymbol{X}^{\star} \boldsymbol{H}\right\|_{\mathrm{F}}^{2} \\
& +\frac{1}{13196 \mu^{2} r^{2} \kappa \sigma_{1}\left(\boldsymbol{M}^{\star}\right)}\|\nabla f(\boldsymbol{X})\|_{\mathrm{F}}^{2}
\end{aligned}
$$

Here \boldsymbol{H} is optimal alignment matrix

Complete the proof

