STAT 37797: Mathematics of Data Science

Introduction to spectral methods

Cong Ma
University of Chicago, Winter 2024

Outline

- A motivating application: community detection
- A general recipe for spectral methods and more applications

A motivating application: community detection

Community detection / graph clustering

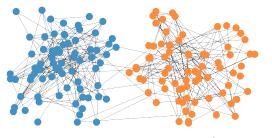
Community structures are common in many social networks

figure credit: The Future Buzz

figure credit: S. Papadopoulos

Goal: partition users into several clusters based on their friendships / similarities

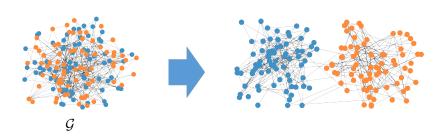
A simple model: stochastic block model (SBM)



- $x_i^{\star} = 1$: 1st community $x_i^{\star} = -1$: 2nd community

- n nodes $\{1,\ldots,n\}$
- 2 communities
- n unknown variables: $x_1^{\star}, \dots, x_n^{\star} \in \{1, -1\}$
 - encode community memberships

A simple model: stochastic block model (SBM)



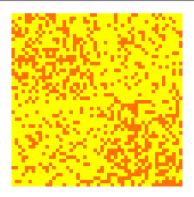
ullet observe a graph ${\mathcal G}$

$$(i,j) \in \mathcal{G}$$
 with prob. $\begin{cases} p, & \text{if } i \text{ and } j \text{ are from same community} \\ q, & \text{else} \end{cases}$

Here, p > q

ullet Goal: recover community memberships of all nodes, i.e., $\{x_i^\star\}$

Adjacency matrix



Consider the adjacency matrix $\mathbf{A} \in \{0,1\}^{n \times n}$ of \mathcal{G} :

$$A_{i,j} = \begin{cases} 1, & \text{if } (i,j) \in \mathcal{G} \\ 0, & \text{else} \end{cases}$$

• WLOG, suppose $x_1^* = \cdots = x_{n/2}^* = 1$; $x_{n/2+1}^* = \cdots = x_n^* = -1$

Adjacency matrix

$$\mathbb{E}[\boldsymbol{A}] = \begin{bmatrix} p\mathbf{1}\mathbf{1}^\top & q\mathbf{1}\mathbf{1}^\top \\ q\mathbf{1}\mathbf{1}^\top & p\mathbf{1}\mathbf{1}^\top \end{bmatrix} = \underbrace{\frac{p+q}{2}}_{\text{uninformative bias}} + \underbrace{\frac{p-q}{2}}_{=\boldsymbol{x}^\star = [x_i]_{1 \leq i \leq n}} \begin{bmatrix} \mathbf{1} \\ -\mathbf{1} \end{bmatrix} \begin{bmatrix} \mathbf{1}^\top, -\mathbf{1}^\top \end{bmatrix}$$

Spectral clustering

- 1. computing the leading eigenvector $m{u} = [u_i]_{1 \leq i \leq n}$ of $m{A} rac{p+q}{2} \mathbf{1} \mathbf{1}^{ op}$
- 2. rounding: output $x_i = \begin{cases} 1, & \text{if } u_i > 0 \\ -1, & \text{if } u_i < 0 \end{cases}$

Rationale behind spectral clustering

Recovery is reliable if $\underbrace{oldsymbol{A} - \mathbb{E}[oldsymbol{A}]}_{ extstyle{perturbation}}$ is sufficiently small

ullet if $A-\mathbb{E}[A]=0$, then

$$u \, \propto \, \pm \left[egin{array}{c} 1 \ -1 \end{array}
ight] \quad \Longrightarrow \quad {\sf perfect \; clustering}$$

A general recipe for spectral methods

Three key steps:

- ullet identify a key matrix M^\star , whose eigenvectors disclose crucial information
- ullet construct a surrogate matrix M of M^\star using data
- ullet compute corresponding eigenvectors of M

Low-rank matrix completion

```
      ✓
      ?
      ?
      ✓
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
      ?
```


figure credit: Candès

- ullet consider a low-rank matrix $M^\star = U^\star \Sigma^\star V^{\star op}$
- each entry $M_{i,j}^{\star}$ is observed independently with prob. p
- intermediate goal: estimate U^{\star}, V^{\star}

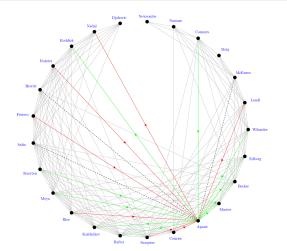
Spectral method for matrix completion

- 1. identify the key matrix M^{\star}
- 2. construct surrogate matrix $oldsymbol{M} \in \mathbb{R}^{n \times n}$ as

$$M_{i,j} = \begin{cases} \frac{1}{p} M_{i,j}^{\star}, & \text{if } M_{i,j}^{\star} \text{ is observed} \\ 0, & \text{else} \end{cases}$$

- \circ rationale for rescaling: ensures $\mathbb{E}[M] = M^\star$
- 3. compute the rank-r SVD $U\Sigma V^{ op}$ of M, and return (U,Σ,V)

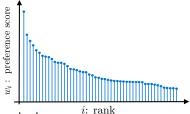
Ranking from pairwise comparisons



pairwise comparisons for ranking tennis players

figure credit: Bozóki, Csató, Temesi

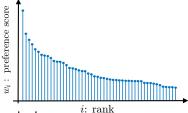
Bradley-Terry-Luce (logistic) model



- \bullet *n* items to be ranked
- assign a latent score $\{w_i^\star\}_{1\leq i\leq n}$ to each item, so that item $i\succ$ item j if $w_i^\star>w_j^\star$
- ullet each pair of items (i,j) is compared independently

$$\mathbb{P}\left\{\text{item } j \text{ beats item } i\right\} = \frac{w_j^\star}{w_i^\star + w_j^\star}$$

Bradley-Terry-Luce (logistic) model



- \bullet n items to be ranked
- \bullet assign a latent score $\{w_i^{\star}\}_{1 \leq i \leq n}$ to each item, so that

$$\text{item } i \succ \text{item } j \quad \text{if} \quad w_i^\star > w_j^\star$$

ullet each pair of items (i,j) is compared independently

$$y_{i,j} \stackrel{\text{ind.}}{=} \begin{cases} 1, & \text{with prob. } \frac{w_j^\star}{w_i^\star + w_j^\star} \\ 0, & \text{else} \end{cases}$$

• intermediate goal: estimate score vector w^* (up to scaling)

Spectral ranking

1. identify key matrix P^* —probability transition matrix

$$P_{i,j}^{\star} = \begin{cases} \frac{1}{n} \cdot \frac{w_j^{\star}}{w_i^{\star} + w_j^{\star}}, & \text{if } i \neq j \\ 1 - \sum_{l:l \neq i} P_{i,l}^{\star}, & \text{if } i = j \end{cases}$$

Rationale:

 \circ $oldsymbol{P}^{\star}$ obeys

$$w_i^{\star} P_{i,j}^{\star} = w_j^{\star} P_{j,i}^{\star}$$
 (detailed balance)

 \circ Thus, the stationary distribution $oldsymbol{\pi}^{\star}$ of $oldsymbol{P}^{\star}$ obeys

$$\pi^{\star} = \frac{1}{\sum_{l} w_{l}^{\star}} w^{\star}$$
 (reveals true scores)

Spectral ranking

2. construct a surrogate matrix \boldsymbol{P} obeying

$$P_{i,j} = \begin{cases} \frac{1}{n} y_{i,j}, & \text{if } i \neq j \\ 1 - \sum_{l:l \neq i} P_{i,l}, & \text{if } i = j \end{cases}$$

3. return leading left eigenvector π of P as score estimate

— closely related to PageRank

Spectral ranking

2. construct a surrogate matrix \boldsymbol{P} obeying

$$P_{i,j} = \begin{cases} \frac{1}{n} y_{i,j}, & \text{if } i \neq j \\ 1 - \sum_{l:l \neq i} P_{i,l}, & \text{if } i = j \end{cases}$$

3. return leading left eigenvector π of P as score estimate

— closely related to PageRank

Key: stability of eigenspace against perturbation $M-M^\star$?