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Matrix perturbation theory (spectral analysis)

Let M™* be a “"simple” matrix, and E be a perturbation matrix

— “simple” means spectral structure of M* is understood

Goal of matrix perturbation theory:

Understand how eigenspaces (resp. eigenvalues) / singular subspaces
(resp. singular values) of M* + E change w.r.t. perturbation E
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Outline

e Preliminaries: basic matrix analysis

e Distance between two subspaces

e Eigenspace perturbation theory

e Perturbation bounds for singular subspaces

e Eigenvector perturbation bounds for probability transition
matrices
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Basic matrix analysis



Unitarily invariant norms

Definition 3.1
A matrix norm ||-[| on R™*" is said to be unitarily invariant if

lAll= v Av]|

holds for any matrix A € R”*™ and any two square orthonormal
matrices U € O™*™ and V € O"*"™,

Examples:

e ||A||: spectral norm (largest singular value of A)

o |[Al|p: Frobenius norm ([[Afr = \/tr(ATA) = /3, ; A7)

Spectral methods: o perturbation theory 3-5




Properties of unitarily invariant norms

Lemma 3.2

For any unitarily invariant norm ||-|||, one has

lABI| < (LA - [ B]], IAB]| < I B - | Al ;
IIAB| > ||All| omin (B) if B is square;
IlAB]| > [|B|l| omin (A) , if A is square.

Exercise: prove this lemma for special cases || - || and || - ||r
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Eigenvalue perturbation bounds

Lemma 3.3 (Weyl's inequality for eigenvalues)

Let A, E € R™™ be two real symmetric matrices. For every
1 <i < n, the i-th largest eigenvalues of A and A + E obey

[Ai(A) = Ai(A+E)| <|E|.
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Eigenvalue perturbation bounds

Lemma 3.3 (Weyl's inequality for eigenvalues)

Let A, E € R™™ be two real symmetric matrices. For every
1 <i < n, the i-th largest eigenvalues of A and A + E obey

[Ai(A) = Ai(A+E)| <|E|.

eigenvalues of real symmetric matrices are stable against perturbations |
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Eigenvalue perturbation bounds

Lemma 3.3 (Weyl's inequality for eigenvalues)

Let A, E € R™™ be two real symmetric matrices. For every
1 <i < n, the i-th largest eigenvalues of A and A + E obey

[Ai(A) = Ai(A+E)| <|E|.

— proof left as exercise

eigenvalues of real symmetric matrices are stable against perturbations |
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Singular value perturbation bounds

Lemma 3.4 (Weyl’s inequality for singular values)

Let A, E € R™*™ be two general matrices. Then for every
1 <4 < min{m,n}, the i-th largest singular values of A and A + E
obey

l0; (A+ E) —0;(A)| < ||E|.

singular values are stable against perturbations
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Proof of Lemma 3.4

We begin with introducing a useful “dilation” trick:

Definition 3.5 (Symmetric dilation)

For A € R"*™2 define its symmetric dilation S(A) to be

Then one has the following eigendecomposition for S(A):

s L[v vl = o 1 Ju v ]

2|V vl 2| BV V]|

Two observations: for 1 < i < min{m,n}, \;(S(A)) = 0;(A), and
IS(A)|| = ||A]|. Apply Lemma 3.3 to finish the proof.
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Distance between two subspaces



Setup and notation

e Two r-dimensional subspaces U/* and U in R™
e Two orthonormal matrices U* and U in R™*"
e Orthogonal complements: [U*,U*], and [U,U |
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Question: how to measure distance?

o |[U —U*||r and |[U — U*|| are not appropriate, since they fall
short of accounting for global orthonormal transformation

V orthonormal RER"*" U and U R represent same subspace
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Three valid choices of distance

e Distance modulo optimal rotation
e Distance using projection matrices

e Geometric construction via principal/canonical angles
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Distance modulo optimal rotation

Given global rotation ambiguity, it is natural to adjust for rotation
before computing distance:

disty g (U, U*) == min |[UR-U"||
I RIS
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Distance using projection matrices

Key observation: projection matrix UU | associated with subspace I
is unique

dist, . (U, U*) = [[UUT —U*U*T|)
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Principal angles between two eigen-spaces

In addition to “distance”, one might also be interested in “angles”

0;

D
Sl

We can quantify the similarity between two lines (represented resp. by
unit vectors u and u*) by an angle between them

6 = arccos(u, u*)
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Principal angles between two eigen-spaces

More generally, for r-dimensional subspaces, one needs r angles

Specifically, given ||[U TU*|| < 1, we write the singular value
decomposition (SVD) of UTU* € R™" as

cos 64
U'ur=X Y' = Xcos®Y'

cos 0,

—=:cos ®

where {01, ...,60,} are called the principal angles between U and U*
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Distance using principal angles

With principal angles in place, we can define sin ® distance between
subspaces as
diStsin,”HH (U, U*) = lsin O

where

01 Sinel
e = , sin® =

Or sin 6,
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Link between projections and principal angles

Lemma 3.6
The following identities are true:

lov" o U = [sin@|| = [[ULU"| = [UTUT;
UU" - U0 | = |lsin O]l = U U, = |U ULl

1

e sanity check: if U = U™, then everything is 0
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Proof of Lemma 3.6

We prove the claim for spectral norm; the claim for Frobenius norm
follows similar argument. Note that

1
o) =|v' v’ Ul
————
:I—U*U*T
— vTU -UTUUTU|?
= || — X cos? @XTH% (write UTU* = X cos®Y ")
— ||I - cos?@||2
= ||sin? @2

= || sin @
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Proof of Lemma 3.6 (cont.)

Given that singular values are unitarily invariant, it suffices to look at
the singular values of the following matrix

l U’ UTut 0 ]

o -U/U*

Ul 1 WU’ —vuT)[Ut,ur] = [

which further implies
WU’ - U U | = max {|UTUL|. [ULU*|};

*T T* * 112 %112 1/2
HUUT -U'U THF = (HUTUJ_HF + HUIU HF)
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Link between optimal rotations and projections

Lemma 3.7

The following identities are true:

UU' -U*U*"||< min |[UR-U*||<V2|UU" —U*U*T
| R
e X7

5
V2

— proof left as exercise
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Summary of distance metrics

So far we have discussed

) v’ -vrut|

2) |[sin®l

3) lUlvH|=lv ot

4)  min ||[UR-U"||
Reorxr
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Summary of distance metrics

So far we have discussed

) v’ -vrut|

2) |[sin®l

3) lUlvH|=lv ot

4)  min ||[UR-U"||
Reorxr

Our choice of distance:
dist(U,U*) == min |[UR-U"||;
REOTXT

distpg(U,U*) == min |[UR-U"

ReOT*r I
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Eigenspace perturbation theory



Setup and notation

Consider 2 symmetric matrices M*, M = M* + E € R™*" with
eigen-decompositions

n

* * * A* 0 U*T

N~y T A O U’
M—;)\Zuzui =|u ULHO ALHUI]
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Setup and notation

M: ul ... uT ur+1 PR un
U Uy,
[\ 1 -
uf
T
Ar a U
—_——— u,
A
)\7'+1 T
ur+1 T
. UL
A
_,_n/ L U;Lr J
L AJ‘ -
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Davis-Kahan'’s sin ® theorem: a simple case

Chandler Davis William Kahan

Theorem 3.8 (Davis-Kahan'’s sin © theorem: simple version)

Suppose M* = 0 and is rank-r. If |E| < (1 —1/v/2)\.(M*), then

o BU| _ 2B

Ar(M*) = \.(M*)’
2|BU* | _ 2y7| B
Ar(M*) — N(M*)’

dist(U,U*) < V2 ||sin ®| <

distp (U, U*) < V2 [|sin®||p <
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Interpretations of Davis-Kahan’s sin © theorem

Suppose M* = 0 and is rank-r. If |E| < (1 —1/v/2)\, ), then

[EU| _ 2llE]

" |
dist(U,U*) < V2 ||sin®|| < L) S )\T(M*)'

Remarks:
Eigen—gap )\T(M*> = )‘T‘(M*) - /\T—I—I(M*)

Perturbation size || E||

Ar(M*)
1]l

Signal-to-noise (SNR) ratio

|EU™|| is sometimes useful; we will see benefit later

Necessity of ||E| < A\ (M™)
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What happens when SNR is small?

A toy example (with 0 < € < 1)

7E:l_€ 6]’ lel e]
€ € e 1

Leading eigenvectors of M™* and M are given respectively by

N 1 1 |1
ui=| 4| and ulzﬁ 1

Consequently, we have

1+e 0

*
M" = 0 1—c¢

Huluir - UTUTTH = , and ||u1u;r - UTUTTHF =1

V2
— large regardless of size of € or size of the perturbation || E||
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Proof of Theorem 3.8

We intend to control UIU* by studying their interactions through E:
U/ EU*=U/ (M - M*U* =AU U —-U[U*A",
which together with triangle inequality implies

U EU|| = [ULUA*|| - A U [T
> omin(A)||ULU|| = ALl - [[ULT]]| - (3.6)

In view of Weyl's inequality, one has ||A || < || E||. In addition, we
have opmin(A*) = A (M™). These combined with relation (3.6) give

IULEG||  _ V2IUL| - IBU _ V2| EU|

H|UIU*H| < )\r(M*) _ HEH - )\T(M*) N AT(M*)

This together with Lemmas 3.6-3.7 completes the proof
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Davis-Kahan’s sin ® theorem: general case

— eigenvalues(A): set of eigenvalues of A

Theorem 3.9 (Davis-Kahan's sin® theorem: general version)

Assume that
eigenvalues(A™) C (—oo, a0 — AJU [B + A, 00); (3.7a)
eigenvalues(A ) C [, A]. (3.7b)

for some quantities o, 3 € R and eigengap A > 0. Then one has

V2| BUT| _ v2lE|,
A A

2|EU~
e (U,U%) < VB sin @ < Y212 e < V2B

dist(U,U*) < v2||sin®| <

— conclusion remains valid if Assumption (3.7) is reversed
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Perturbation theory for singular subspaces



Singular value decomposition

Let M* and M = M* + E be two matrices in R™*"2 (WLOG, we
assume n; < ng), whose SVDs are given respectively by

***T ¥ 0 0 V*T
Z" =|v Ui]lo =t oHVIT]

> 0 0 v’

M:,Zai“i”;r =|U ULHO ) O][Vj]

® g1 >--- >0y (resp. of > --- > 0}, ) stand for the singular
values of M (resp. M*) arranged in descending order

e U,U* € R™*" have orthonormal columns
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Wedin’s sin ® theorem

Davis-Kahan's theorem generalizes to singular subspace perturbation:

Theorem 3.10 (Wedin's sin® theorem)
If|E|| < oy — 0}, then one has

V2max {|[ETU|, | EV*|}

)

max {dist(U, U*),dist(V,V*)} < - ]

_ V2max {|ETU*|p, |EV*||r}

max {distp (U, U"), distp (V, V™) }

*
0-7‘

or — | B

— can be simplified if |E|| < (1 —1/v2)(0} — 0741)
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Proof of Theorem 3.10

Similar to proof of Davis-Kahan theorem, we concentrate on UIU*
ulur =U] (Urs v v

U (M- E-UvT ) vis!

U] (Uzv'+ U V] - E-UiziviT) vese!

=X, Vv ! U EV*ETL (3.9)
Applying triangle inequality and Lemma 3.2 to identity (3.9) yields
e R R e N e N e R

= ot VIV + BV

E *
< Zet By o LBV (310
r Tr
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Proof of Theorem 3.10 (cont.)

Repeating the same argument yields

ETUY|| | op + B

* *
O-’f' O-T

vy <! lTol Gy

To finish up, combine inequalities (3.10) and (3.11) to obtain

max {|| ETU*|, || EV*|[}

*
O-T‘

max {[[UL U], [V VI} <

| T+ 1B

*
O-T‘

max {[[ULU|, [V v}

When ||E|| < of — 0}, we can rearrange terms to obtain desired
results
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Extensions of Wedin’s theorem

e Single rotation matrix: Wedin shows us existence of two unitary
matrices Ry, Ry such that

max {|[URy — U*||r, |[VRy — V*||p} is small

o Can actually take same unitary matrix (exercise; hint “dilation”)

e Separate bounds for left and right singular vectors:

o Can treat U and V differently and obtain sharper bounds
o Useful when nq and no are drastically different
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Eigenvector perturbation for probability
transition matrices



Eigen-decomposition for asymmetric matrices

Eigen-decomposition for asymmetric matrices is trickier:

1. both eigenvalues and eigenvectors might be complex-valued

2. eigenvectors might not be orthogonal to each other

This lecture focuses on a special case: probability transition
matrices
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Probability transition matrices

Consider a Markov chain {X;};>0

e 1 states
e transition probability P{X;;1 =j | Xy =i} =P,

e transition matrix P = [P; j|1<i j<n

Spectral methods: £o perturbation theory
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Stationary distribution

Recall P is probability transition matrix

e 7 = [T;]1<i<n is stationary distribution of P if
7w > 0, 177 = 1, and ' P=x'

e 7 is in fact left eigenvector of P with eigenvalue 1

e 1 is largest eigenvalue of P in absolute sense: |\;(P)| <1 by
Gershgorin circle theorem
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Reversible Markov chains

e Markov chain {X;};>¢ with transition matrix P and stationary
distribution 7 is said to be reversible if

7Ti1D¢,j = 7Tj1Dj7Z' for all i,j

— detailed balance condition

e Nice consequence: if P is reversible, all eigenvalues are real
— will see proof later
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Setup

Probability transition matrix P* of reversible Markov chain
Perturbed transition matrix P = P* + E

7*, 7 are leading left eigenvectors of P*, P, respectively

Question: how does E affect perturbation @ — 7*

Spectral methods: o perturbation theory

3-43



New norms

Fix a strictly positive probability vector @ = [m;]1<i<p, define

e Vector norm: ||z||x == />, miz? with © = [z;]1<i<n

e Matrix norm: [|Al|x = Sup|y,. =1 [[Az[x with
A = [Aijhi<ijen

Spectral methods: o perturbation theory

3-44



Eigenvector perturbation for transition matrices

Theorem 3.11 (Chen, Fan, Ma, Wang '17)

Suppose that P* represents a reversible Markov chain, whose
stationary distribution vector 7* is strictly positive. Assume that

| B« <1—max {)\Q(P*), —)\n(P*)}.
Then one has

I = e < = Bl
™ =1~ max {Ma(PY), =M (P} — |E| .

e Similar to Davis-Kahan
e Eigengap: 1 — max {\o(P*), =\, (P*)} since 1 = A\ (P)
e Noise size: Hﬂ'*TEHﬂ_*
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Proof of Theorem 3.11

By definitions of w* and &, we have
TP =g and ' P=xn',
which imply the following decomposition of w — 7*

ﬂ_T _ﬂ_*T ZTFTP—TF*TP* _ (7r—7r*)TP—|—7r*T(P—P*)
—(n—m) (P—P)+(r—7*) P + 7 (P - P*
—(r—7") (P—P)+ (-7 (P —17*") + 7T (P — P¥)

In last step, we use (m —7*) ' 1=1—-1=0
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Proof of Theorem 3.11 (cont.)

Apply triangle inequality w.r.t. norm || - ||z« to obtain
l7e = 7|l < || (= 7*) " (P~ P7)
+ 7T (P = P |
< (|1P = Pl + | P* =127
+ 7 (P =P

T + H (ﬂ. - ﬂ-*)—r (P* - 1Tr*T)H7r*

e ) 170 = 7 e

Assuming || P — P*||z + |P* — 17*T ||z« < 1, rearrangement gives

|7*T (P —P*)| .,
s
| P — P*||zx — || P* — 170*T|

7 = 7 < <

T

Proof will be complete if one can show
|P* — 1T ||, = max {Xo(P*), =\, (P*)} (3.12)
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Proof of identity (3.12)

Define diagonal matrix IT* = diag([n], - ,75]) € R"*™. Observe

\ 1/2 N —1/2 (rrsn1/2
JAw e [0 A ) e,
HCUHn- 2+£0 H(H*
||<H*>”2A<n*>*”%||2
= sup

v#£0 HUHQ

[ Al = sup

= ()2 a ) 2

As a consequence, one has
1P* = 17T e = || (T2 (P* — 1*T) (1) /2|
=[|8* - 7"?/2(77;/2)TH
with §* = (IT)"/2 P* (I1)7'/% and @}, = [(7})/?]1<j<n
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Proof of identity (3.12) (cont.)

Several properties of S*:

e Symmetric: all eigenvalues are real
— check detailed balance

e Similar to P*: S* have same eigenvalues as P*, and
5*7’{/2 = 7";/2
e Eigenvalues of §* — 7rf/2(7rf/2)T are 0, A2(S™), ..., A (S*)
Combine all to see
|8~ _7"1/2 71'1/2 H = max{‘)‘ ) Aa (S}

= max {A2(5), ~ A (5} € max {As(P*), ~An(P*)}.
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